PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m708.
Published online 2009 June 6. doi:  10.1107/S1600536809020352
PMCID: PMC2969372

Dibromidobis(1,10-phenanthroline-κ2 N,N′)cadmium(II)

Abstract

The title compound, [CdBr2(C12H8N2)2], synthesized by the hydro­thermal reaction of Cd(CH3COO)2·2H2O with NaBr and 1,10-phenanthroline, has the CdII cation coordinated by two Br anions and four N atoms from two 1,10-phenanthroline ligands in a distorted octa­hedral geometry. The crystal packing is stabilized by inter­molecular π–π inter­actions with centroid–centroid distances 3.572 (1) and 3.671 (1) Å together with C—H(...)Br hydrogen bonds.

Related literature

For other cadmium–halogen compounds with 1,10-phenanthroline (phen) as a coligand, see: Cao et al. (2007 [triangle]); Chen et al. (2003 [triangle]); Guo et al. (2006 [triangle]); He et al. (2005 [triangle]); Li et al. (2007 [triangle]); Wang et al. (1996 [triangle]); Zhang (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m708-scheme1.jpg

Experimental

Crystal data

  • [CdBr2(C12H8N2)2]
  • M r = 632.63
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m708-efi1.jpg
  • a = 9.3996 (2) Å
  • b = 10.1421 (3) Å
  • c = 12.8441 (3) Å
  • α = 78.927 (2)°
  • β = 81.303 (1)°
  • γ = 70.633 (1)°
  • V = 1128.58 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.53 mm−1
  • T = 296 K
  • 0.30 × 0.28 × 0.06 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.279, T max = 0.762
  • 15420 measured reflections
  • 5656 independent reflections
  • 4515 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.109
  • S = 1.03
  • 5656 reflections
  • 280 parameters
  • H-atom parameters constrained
  • Δρmax = 1.05 e Å−3
  • Δρmin = −1.16 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809020352/sj2628sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020352/sj2628Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation (NSF) of Jiangxi Province (grant No. 2008GQH0013), the NSF of Jiangxi Provincial Education Department (grant No. GJJ09317), and the Key Laboratory of Jiangxi University for Functional Materials Chemistry.

supplementary crystallographic information

Comment

Recently, there have been a number of reports of cadmium-halogen complexes with 1,10-phenanthroline (phen) as a coligand (Cao et al., 2007; Chen et al., 2003; Guo et al., 2006; He et al., 2005; Li et al., 2007; Wang et al., 1996; Zhang, et al., 2007). We have synthesized the mononuclear title complex [CdBr2(phen)2], (I), Fig 1. The CdII cation is coordinated by two Br- anions and four N atoms from two 1,10-phenanthroline ligands in a distorted octahedral geometry, Table 1. The Cd—Br and Cd—N bond lengths are in the expected ranges (Allen et al. 1987). It is worthy of note that compound I crystallizes in the triclinic space group P-1 , while the analogous mononuclear chlorido and iodido complexes [CdCl2(phen)2] (Wang et al., 1996) and [CdI2(phen)2] (Cao et al., 2007) crystallize in the monoclinic, P21/c, and orthorhombic, Pbcn, space groups respectively.

The crystal packing is stabilized by intermolecular π–π interactions between the phen rings, with centroid-centroid distances of 3.572 (1) Å (from two adjacent C13/C14/C15/C16/C24/N3 rings) and 3.671 (1) Å (from two adjacent C7/C8/C9/C10/N2/C11 rings), and C—H···Br hydrogen bonds, Table 2.

Experimental

A mixture of Cd(CH3COO)2.2(H2O) (67 mg, 0.25 mmol), NaBr (36 mg, 0.35 mmol) and 1,10-phenanthroline (69 mg, 0.35 mmol) in 10 ml distilled water was put into a Parr Teflon-lined autoclave (23 ml) and heated at 413 K for 3 days. On cooling, yellow block-shaped crystals of compound I were collected in a ca 55% yield based on Cd.

Refinement

All H atoms were placed at calculated positions and refined with isotropic displacement parameters using a riding model [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. The highest electron density peaks in the difference map, 1.05 and -1.16 Å, are close to the Cd1 and Br1 atoms, respectively.

Figures

Fig. 1.
The molecular structure of compound I, with displacement ellipsoids drawn at the 30% probability level for non-H atoms.

Crystal data

[CdBr2(C12H8N2)2]Z = 2
Mr = 632.63F(000) = 612
Triclinic, P1Dx = 1.862 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3996 (2) ÅCell parameters from 15420 reflections
b = 10.1421 (3) Åθ = 1.6–28.4°
c = 12.8441 (3) ŵ = 4.53 mm1
α = 78.927 (2)°T = 296 K
β = 81.303 (1)°Block, yellow
γ = 70.633 (1)°0.30 × 0.28 × 0.06 mm
V = 1128.58 (5) Å3

Data collection

Bruker SMART APEXII diffractometer5656 independent reflections
Radiation source: fine-focus sealed tube4515 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −12→12
Tmin = 0.279, Tmax = 0.762k = −13→12
15420 measured reflectionsl = −17→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0576P)2 + 1.3724P] where P = (Fo2 + 2Fc2)/3
5656 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = −1.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.55044 (3)0.23874 (3)0.24464 (2)0.03912 (10)
Br10.74883 (7)0.36969 (6)0.16057 (4)0.06865 (16)
Br20.71950 (5)−0.02183 (4)0.32529 (4)0.05049 (13)
N10.3404 (4)0.1407 (3)0.2733 (3)0.0423 (7)
N20.4886 (4)0.2069 (4)0.0812 (2)0.0430 (7)
N30.4726 (4)0.3143 (4)0.4127 (3)0.0451 (8)
N40.3237 (4)0.4503 (4)0.2368 (3)0.0492 (8)
C10.2693 (5)0.1083 (5)0.3666 (4)0.0557 (11)
H1A0.30480.11580.42830.067*
C20.1434 (6)0.0635 (7)0.3752 (5)0.0752 (16)
H2A0.09630.04130.44230.090*
C30.0887 (6)0.0519 (7)0.2884 (6)0.0803 (17)
H3A0.00260.02400.29480.096*
C40.1629 (5)0.0824 (5)0.1871 (5)0.0616 (12)
C50.1163 (6)0.0697 (7)0.0888 (6)0.0797 (17)
H5A0.03160.04110.09050.096*
C60.1928 (7)0.0986 (6)−0.0054 (5)0.0750 (16)
H6A0.16180.0864−0.06740.090*
C70.3194 (6)0.1471 (5)−0.0124 (4)0.0545 (11)
C80.4023 (7)0.1798 (5)−0.1086 (4)0.0663 (14)
H8A0.37500.1697−0.17250.080*
C90.5217 (8)0.2258 (6)−0.1086 (4)0.0716 (15)
H9A0.57610.2485−0.17240.086*
C100.5626 (6)0.2389 (5)−0.0119 (3)0.0569 (11)
H10A0.64450.2712−0.01260.068*
C110.3688 (5)0.1622 (4)0.0822 (3)0.0427 (9)
C120.2892 (4)0.1273 (4)0.1839 (3)0.0436 (9)
C130.5464 (6)0.2500 (5)0.4971 (3)0.0561 (11)
H13A0.63280.17290.48950.067*
C140.5008 (7)0.2923 (6)0.5971 (4)0.0678 (14)
H14A0.55700.24520.65440.081*
C150.3737 (8)0.4027 (6)0.6098 (4)0.0707 (15)
H15A0.34210.43210.67610.085*
C160.2903 (6)0.4723 (5)0.5235 (4)0.0593 (12)
C170.1551 (8)0.5900 (6)0.5292 (5)0.0803 (18)
H17A0.12010.62390.59370.096*
C180.0766 (8)0.6533 (7)0.4438 (5)0.0835 (18)
H18A−0.01320.72720.45110.100*
C190.1298 (6)0.6082 (5)0.3421 (4)0.0666 (14)
C200.0546 (7)0.6714 (7)0.2503 (5)0.089 (2)
H20A−0.03600.74510.25430.106*
C210.1138 (8)0.6255 (7)0.1547 (5)0.090 (2)
H21A0.06510.66810.09330.108*
C220.2493 (6)0.5126 (5)0.1514 (4)0.0639 (13)
H22A0.28860.48010.08680.077*
C230.2659 (5)0.4952 (4)0.3313 (4)0.0505 (10)
C240.3446 (5)0.4250 (4)0.4241 (3)0.0467 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.04326 (16)0.04325 (16)0.03189 (14)−0.01209 (11)−0.00285 (10)−0.01124 (11)
Br10.0775 (4)0.0791 (4)0.0600 (3)−0.0404 (3)0.0076 (3)−0.0180 (3)
Br20.0427 (2)0.0468 (2)0.0585 (3)−0.00646 (17)−0.00875 (18)−0.01007 (19)
N10.0415 (17)0.0412 (17)0.0432 (17)−0.0114 (13)−0.0039 (13)−0.0065 (14)
N20.0506 (19)0.0442 (18)0.0348 (16)−0.0137 (15)−0.0054 (14)−0.0081 (13)
N30.059 (2)0.0428 (17)0.0360 (16)−0.0165 (15)−0.0029 (14)−0.0122 (14)
N40.060 (2)0.0411 (18)0.0392 (17)−0.0078 (16)−0.0006 (15)−0.0049 (14)
C10.055 (3)0.060 (3)0.051 (2)−0.020 (2)0.005 (2)−0.010 (2)
C20.055 (3)0.089 (4)0.082 (4)−0.033 (3)0.021 (3)−0.016 (3)
C30.044 (3)0.100 (4)0.106 (5)−0.036 (3)0.004 (3)−0.024 (4)
C40.040 (2)0.066 (3)0.084 (3)−0.015 (2)−0.011 (2)−0.021 (3)
C50.054 (3)0.094 (4)0.107 (5)−0.027 (3)−0.034 (3)−0.023 (4)
C60.070 (3)0.079 (4)0.084 (4)−0.012 (3)−0.040 (3)−0.027 (3)
C70.069 (3)0.046 (2)0.051 (2)−0.011 (2)−0.027 (2)−0.0098 (19)
C80.094 (4)0.058 (3)0.046 (2)−0.011 (3)−0.031 (3)−0.011 (2)
C90.110 (5)0.073 (3)0.035 (2)−0.033 (3)−0.007 (2)−0.010 (2)
C100.074 (3)0.065 (3)0.035 (2)−0.028 (2)−0.001 (2)−0.0093 (19)
C110.045 (2)0.0382 (19)0.0409 (19)−0.0033 (16)−0.0134 (16)−0.0078 (16)
C120.0322 (18)0.042 (2)0.055 (2)−0.0053 (15)−0.0084 (16)−0.0110 (17)
C130.076 (3)0.055 (3)0.042 (2)−0.021 (2)−0.012 (2)−0.0130 (19)
C140.102 (4)0.070 (3)0.041 (2)−0.035 (3)−0.012 (2)−0.012 (2)
C150.113 (5)0.072 (3)0.040 (2)−0.048 (3)0.016 (3)−0.024 (2)
C160.081 (3)0.052 (3)0.050 (2)−0.028 (2)0.015 (2)−0.022 (2)
C170.098 (4)0.070 (3)0.068 (4)−0.021 (3)0.029 (3)−0.038 (3)
C180.082 (4)0.073 (4)0.082 (4)−0.002 (3)0.017 (3)−0.037 (3)
C190.066 (3)0.050 (3)0.069 (3)−0.002 (2)0.007 (2)−0.014 (2)
C200.075 (4)0.068 (4)0.089 (4)0.017 (3)−0.004 (3)−0.009 (3)
C210.089 (4)0.071 (4)0.074 (4)0.023 (3)−0.019 (3)−0.005 (3)
C220.067 (3)0.058 (3)0.051 (3)0.000 (2)−0.007 (2)−0.005 (2)
C230.058 (2)0.037 (2)0.052 (2)−0.0112 (18)0.0064 (19)−0.0112 (17)
C240.063 (3)0.0366 (19)0.042 (2)−0.0199 (18)0.0084 (18)−0.0128 (16)

Geometric parameters (Å, °)

Cd1—N32.359 (3)C7—C111.415 (5)
Cd1—N22.367 (3)C8—C91.350 (9)
Cd1—N12.442 (3)C8—H8A0.9300
Cd1—N42.471 (3)C9—C101.396 (6)
Cd1—Br12.6249 (6)C9—H9A0.9300
Cd1—Br22.6913 (5)C10—H10A0.9300
N1—C11.319 (5)C11—C121.448 (6)
N1—C121.356 (5)C13—C141.393 (6)
N2—C101.329 (5)C13—H13A0.9300
N2—C111.344 (5)C14—C151.354 (8)
N3—C131.318 (6)C14—H14A0.9300
N3—C241.358 (5)C15—C161.391 (8)
N4—C221.328 (6)C15—H15A0.9300
N4—C231.351 (5)C16—C241.413 (6)
C1—C21.384 (7)C16—C171.430 (8)
C1—H1A0.9300C17—C181.350 (9)
C2—C31.336 (9)C17—H17A0.9300
C2—H2A0.9300C18—C191.430 (7)
C3—C41.410 (8)C18—H18A0.9300
C3—H3A0.9300C19—C201.401 (8)
C4—C121.399 (6)C19—C231.416 (6)
C4—C51.438 (8)C20—C211.370 (8)
C5—C61.344 (9)C20—H20A0.9300
C5—H5A0.9300C21—C221.404 (7)
C6—C71.417 (8)C21—H21A0.9300
C6—H6A0.9300C22—H22A0.9300
C7—C81.402 (8)C23—C241.437 (6)
N3—Cd1—N2149.72 (12)C7—C8—H8A119.9
N3—Cd1—N188.27 (12)C8—C9—C10119.4 (5)
N2—Cd1—N169.02 (12)C8—C9—H9A120.3
N3—Cd1—N468.75 (12)C10—C9—H9A120.3
N2—Cd1—N486.08 (12)N2—C10—C9122.4 (5)
N1—Cd1—N476.42 (12)N2—C10—H10A118.8
N3—Cd1—Br1103.12 (9)C9—C10—H10A118.8
N2—Cd1—Br196.15 (9)N2—C11—C7122.3 (4)
N1—Cd1—Br1163.88 (8)N2—C11—C12118.4 (3)
N4—Cd1—Br196.90 (9)C7—C11—C12119.3 (4)
N3—Cd1—Br294.02 (9)N1—C12—C4122.3 (4)
N2—Cd1—Br2103.63 (8)N1—C12—C11118.1 (4)
N1—Cd1—Br285.87 (8)C4—C12—C11119.6 (4)
N4—Cd1—Br2155.34 (9)N3—C13—C14123.0 (5)
Br1—Cd1—Br2104.380 (19)N3—C13—H13A118.5
C1—N1—C12118.6 (4)C14—C13—H13A118.5
C1—N1—Cd1125.6 (3)C15—C14—C13119.2 (5)
C12—N1—Cd1115.7 (3)C15—C14—H14A120.4
C10—N2—C11118.8 (4)C13—C14—H14A120.4
C10—N2—Cd1122.5 (3)C14—C15—C16120.0 (4)
C11—N2—Cd1118.6 (2)C14—C15—H15A120.0
C13—N3—C24118.6 (4)C16—C15—H15A120.0
C13—N3—Cd1122.3 (3)C15—C16—C24117.7 (5)
C24—N3—Cd1119.1 (3)C15—C16—C17123.9 (5)
C22—N4—C23119.0 (4)C24—C16—C17118.3 (5)
C22—N4—Cd1125.6 (3)C18—C17—C16122.0 (5)
C23—N4—Cd1115.0 (3)C18—C17—H17A119.0
N1—C1—C2121.9 (5)C16—C17—H17A119.0
N1—C1—H1A119.0C17—C18—C19120.7 (5)
C2—C1—H1A119.0C17—C18—H18A119.6
C3—C2—C1120.8 (5)C19—C18—H18A119.6
C3—C2—H2A119.6C20—C19—C23117.2 (5)
C1—C2—H2A119.6C20—C19—C18123.3 (5)
C2—C3—C4119.3 (5)C23—C19—C18119.5 (5)
C2—C3—H3A120.3C21—C20—C19120.3 (5)
C4—C3—H3A120.3C21—C20—H20A119.8
C12—C4—C3117.0 (5)C19—C20—H20A119.8
C12—C4—C5119.0 (5)C20—C21—C22118.6 (5)
C3—C4—C5124.0 (5)C20—C21—H21A120.7
C6—C5—C4121.3 (5)C22—C21—H21A120.7
C6—C5—H5A119.4N4—C22—C21122.6 (5)
C4—C5—H5A119.4N4—C22—H22A118.7
C5—C6—C7121.5 (5)C21—C22—H22A118.7
C5—C6—H6A119.3N4—C23—C19122.2 (4)
C7—C6—H6A119.3N4—C23—C24118.9 (4)
C8—C7—C11117.0 (5)C19—C23—C24119.0 (4)
C8—C7—C6123.8 (5)N3—C24—C16121.5 (4)
C11—C7—C6119.3 (5)N3—C24—C23118.1 (3)
C9—C8—C7120.2 (4)C16—C24—C23120.4 (4)
C9—C8—H8A119.9

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3A···Br2i0.932.813.731 (5)171
C20—H20A···Br2ii0.932.883.776 (5)162

Symmetry codes: (i) x−1, y, z; (ii) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2628).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2008). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cao, M.-L., Fang, X., Yu, H.-Y. & Wang, J.-D. (2007). Acta Cryst. E63, m1951.
  • Chen, H.-B., Zhou, Z.-H., Wan, H.-L. & Ng, S. W. (2003). Acta Cryst. E59, m845–m846.
  • Guo, H.-X., Yang, L.-M., Lin, Z.-X. & Zou, X.-J. (2006). Acta Cryst. E62, m2863–m2865.
  • He, H.-Y., Zhou, Y.-L., Chen, J. & Zhu, L.-G. (2005). Z. Kristallogr. New Cryst. Struct.220, 209–210.
  • Li, W.-H., Liu, F.-Q., Pang, X.-H. & Hou, B.-R. (2007). Acta Cryst. E63, m1050–m1051.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, H., Xiong, R.-G., Chen, H.-Y., Huang, X.-Y. & You, X.-Z. (1996). Acta Cryst. C52, 1658–1661.
  • Zhang, B.-S. (2007). Acta Cryst. E63, m1562.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography