PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1649.
Published online 2009 June 20. doi:  10.1107/S1600536809022971
PMCID: PMC2969363

N′-(5-Bromo-2-methoxy­benzyl­idene)-2-methoxy­benzohydrazide

Abstract

The title hydrazone compound, C16H15BrN2O3, adopts an E configuration about the C=N double bond. The mol­ecule is twisted, the dihedral angle between the two substituted benzene rings being 22.0 (2)°. In the crystal structure, mol­ecules are linked through inter­molecular N—H(...)O hydrogen bonds, forming chains along the c axis.

Related literature

For the biological properties of the hydrazone compounds, see: Khattab et al. (2005 [triangle]); Küçükgüzel et al. (2003 [triangle]); Çukurovalı et al. (2006 [triangle]). For the structures of hydrazone derivatives, see: Fun et al. (2008 [triangle]); Wei et al. (2009 [triangle]); Khaledi et al. (2008 [triangle]); Yang et al. (2008 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1649-scheme1.jpg

Experimental

Crystal data

  • C16H15BrN2O3
  • M r = 363.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1649-efi1.jpg
  • a = 13.3286 (3) Å
  • b = 11.4816 (3) Å
  • c = 10.1233 (2) Å
  • β = 99.128 (1)°
  • V = 1529.59 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.70 mm−1
  • T = 298 K
  • 0.20 × 0.18 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.614, T max = 0.642
  • 9188 measured reflections
  • 3323 independent reflections
  • 2281 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.096
  • S = 1.01
  • 3323 reflections
  • 204 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.65 e Å−3
  • Δρmin = −0.69 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022971/at2816sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022971/at2816Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are gratefully acknowledge Chifeng University for a research funding.

supplementary crystallographic information

Comment

Hydrazone and Schiff base compounds derived from the reaction of aldehydes with hydrazides have been widely investigated both for their crystal structures and biological properties (Khattab et al., 2005; Küçükgüzel et al., 2003; Çukurovalı et al., 2006). In the last few years, a large number of hydrazone derivatives have been reported (Fun et al., 2008; Wei et al., 2009; Khaledi et al., 2008; Yang et al., 2008). However, the hydrazone compounds derived the 5-bromo-2-methoxybenzaldehyde have never been reported. In this paper, the crystal structure of the title new hydrazone compound, (I), derived from the reaction of 5-bromo-2-methoxybenzaldehyde and 2-methoxybenzohydrazide, is reported.

The molecular structure of (I) is shown as Fig. 1. The molecule adopts an E configuration about the C═N double bond. The molecule is twisted about the C8—N1—N2—C9 moiety, with the dihedral angle between the C1—C6 and C10—C15 benzene rings of 22.0 (2)°. All the bond lengths are within normal values (Allen et al., 1987).

In the crystal structure of the compound, molecules are linked through intermolecular N–H···O hydrogen bonds (Table 1), forming chains along the c axis, as shown in Fig. 2.

Experimental

5-Bromo-2-methoxybenzaldehyde (1.0 mmol, 215.0 mg) and 2-methoxybenzohydrazide (1.0 mmol, 166.2 mg) were mixed and refluxed in methanol (50 ml). The mixture was stirred for 1 h to give a clear colourless solution. Colourless crystals of (I) were formed by slow evaporation of the solution in air for a few days.

Refinement

H2 attached to N2 was located in a difference map and refined with N–H distance restraint of 0.90 (1) Å. The other H atoms were positioned geometrically [d(C–H) = 0.93–0.96 Å], and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal packing of (I). Hydrogen atoms not involved in hydrogen bonding have been omitted. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C16H15BrN2O3F(000) = 736
Mr = 363.21Dx = 1.577 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2540 reflections
a = 13.3286 (3) Åθ = 2.4–27.4°
b = 11.4816 (3) ŵ = 2.70 mm1
c = 10.1233 (2) ÅT = 298 K
β = 99.128 (1)°Block, colourless
V = 1529.59 (6) Å30.20 × 0.18 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3323 independent reflections
Radiation source: fine-focus sealed tube2281 reflections with I > 2σ(I)
graphiteRint = 0.025
ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −16→15
Tmin = 0.614, Tmax = 0.642k = −14→12
9188 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0398P)2 + 1.0409P] where P = (Fo2 + 2Fc2)/3
3323 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 0.65 e Å3
1 restraintΔρmin = −0.68 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.36301 (2)1.06194 (4)0.08660 (4)0.07080 (16)
O10.67425 (14)1.12056 (19)0.5818 (2)0.0511 (5)
O20.80411 (13)0.73514 (17)0.15200 (18)0.0419 (5)
O31.01119 (14)0.80174 (18)0.4696 (2)0.0497 (5)
N10.72756 (15)0.88017 (18)0.3201 (2)0.0327 (5)
N20.80859 (15)0.80683 (19)0.3608 (2)0.0322 (5)
C10.61419 (18)1.0218 (2)0.3825 (3)0.0335 (6)
C20.60017 (19)1.1107 (2)0.4729 (3)0.0377 (6)
C30.5157 (2)1.1822 (2)0.4485 (3)0.0447 (7)
H30.50681.24090.50890.054*
C40.4447 (2)1.1667 (3)0.3350 (3)0.0484 (7)
H40.38731.21380.31940.058*
C50.4594 (2)1.0810 (3)0.2451 (3)0.0438 (7)
C60.54289 (19)1.0089 (2)0.2674 (3)0.0383 (6)
H60.55160.95150.20540.046*
C70.6646 (3)1.2090 (3)0.6772 (4)0.0734 (11)
H7A0.66301.28390.63470.110*
H7B0.72141.20540.74830.110*
H7C0.60271.19740.71290.110*
C80.70088 (18)0.9428 (2)0.4122 (3)0.0340 (6)
H80.73660.93830.49880.041*
C90.84257 (17)0.7374 (2)0.2700 (2)0.0300 (5)
C100.93090 (18)0.6607 (2)0.3210 (2)0.0331 (6)
C111.01527 (19)0.6938 (3)0.4138 (3)0.0376 (6)
C121.0973 (2)0.6182 (3)0.4424 (3)0.0517 (8)
H121.15480.64140.50100.062*
C131.0941 (3)0.5100 (3)0.3852 (3)0.0588 (9)
H131.14930.46000.40560.071*
C141.0107 (3)0.4748 (3)0.2987 (3)0.0576 (9)
H141.00800.40020.26260.069*
C150.9304 (2)0.5502 (2)0.2649 (3)0.0447 (7)
H150.87470.52670.20340.054*
C161.0993 (2)0.8449 (4)0.5536 (4)0.0690 (10)
H16A1.11170.79950.63420.103*
H16B1.08870.92480.57570.103*
H16C1.15680.83950.50760.103*
H20.830 (3)0.802 (3)0.4490 (12)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0439 (2)0.0908 (3)0.0690 (3)0.00890 (18)−0.01763 (15)0.0059 (2)
O10.0405 (11)0.0619 (14)0.0490 (12)0.0068 (10)0.0010 (9)−0.0198 (10)
O20.0364 (10)0.0531 (12)0.0333 (10)0.0071 (9)−0.0033 (8)−0.0053 (9)
O30.0324 (10)0.0606 (14)0.0520 (12)0.0012 (9)−0.0057 (9)−0.0146 (10)
N10.0240 (10)0.0347 (12)0.0372 (12)0.0022 (9)−0.0016 (8)0.0008 (10)
N20.0280 (10)0.0361 (12)0.0309 (11)0.0053 (9)−0.0006 (9)−0.0003 (10)
C10.0268 (12)0.0352 (14)0.0387 (14)0.0005 (10)0.0050 (10)0.0012 (11)
C20.0302 (13)0.0409 (15)0.0433 (15)−0.0017 (12)0.0103 (11)0.0002 (12)
C30.0411 (15)0.0387 (17)0.0570 (19)0.0061 (13)0.0161 (14)−0.0006 (14)
C40.0343 (14)0.0463 (18)0.066 (2)0.0095 (13)0.0111 (14)0.0104 (15)
C50.0279 (13)0.0518 (18)0.0496 (17)−0.0003 (12)−0.0007 (12)0.0129 (14)
C60.0322 (13)0.0392 (15)0.0424 (15)0.0007 (12)0.0022 (11)0.0018 (13)
C70.066 (2)0.086 (3)0.067 (2)0.002 (2)0.0068 (18)−0.036 (2)
C80.0280 (12)0.0366 (15)0.0354 (14)0.0003 (11)−0.0003 (10)−0.0040 (12)
C90.0254 (11)0.0327 (14)0.0316 (13)−0.0044 (10)0.0030 (10)0.0011 (11)
C100.0298 (12)0.0402 (15)0.0299 (13)0.0040 (11)0.0063 (10)0.0027 (11)
C110.0309 (13)0.0519 (18)0.0302 (13)0.0037 (12)0.0055 (10)0.0004 (12)
C120.0344 (15)0.076 (2)0.0432 (17)0.0123 (15)0.0004 (12)0.0061 (16)
C130.0533 (19)0.069 (2)0.0544 (19)0.0303 (18)0.0104 (15)0.0104 (18)
C140.067 (2)0.0481 (19)0.057 (2)0.0191 (17)0.0089 (17)−0.0003 (16)
C150.0456 (16)0.0454 (18)0.0417 (16)0.0073 (14)0.0026 (12)−0.0025 (13)
C160.0376 (17)0.099 (3)0.066 (2)−0.0064 (18)−0.0055 (15)−0.033 (2)

Geometric parameters (Å, °)

Br1—C51.902 (3)C6—H60.9300
O1—C21.363 (3)C7—H7A0.9600
O1—C71.421 (4)C7—H7B0.9600
O2—C91.223 (3)C7—H7C0.9600
O3—C111.367 (3)C8—H80.9300
O3—C161.425 (3)C9—C101.495 (3)
N1—C81.273 (3)C10—C151.390 (4)
N1—N21.380 (3)C10—C111.398 (3)
N2—C91.348 (3)C11—C121.389 (4)
N2—H20.894 (10)C12—C131.369 (5)
C1—C61.390 (4)C12—H120.9300
C1—C21.402 (4)C13—C141.363 (5)
C1—C81.462 (3)C13—H130.9300
C2—C31.383 (4)C14—C151.377 (4)
C3—C41.380 (4)C14—H140.9300
C3—H30.9300C15—H150.9300
C4—C51.376 (4)C16—H16A0.9600
C4—H40.9300C16—H16B0.9600
C5—C61.376 (4)C16—H16C0.9600
C2—O1—C7118.5 (2)N1—C8—C1120.2 (2)
C11—O3—C16118.6 (2)N1—C8—H8119.9
C8—N1—N2115.0 (2)C1—C8—H8119.9
C9—N2—N1119.2 (2)O2—C9—N2123.0 (2)
C9—N2—H2124 (2)O2—C9—C10120.7 (2)
N1—N2—H2116 (2)N2—C9—C10116.3 (2)
C6—C1—C2118.7 (2)C15—C10—C11118.3 (2)
C6—C1—C8121.3 (2)C15—C10—C9116.3 (2)
C2—C1—C8120.0 (2)C11—C10—C9125.3 (2)
O1—C2—C3124.0 (3)O3—C11—C12124.2 (3)
O1—C2—C1115.7 (2)O3—C11—C10116.3 (2)
C3—C2—C1120.3 (3)C12—C11—C10119.5 (3)
C4—C3—C2120.3 (3)C13—C12—C11120.5 (3)
C4—C3—H3119.9C13—C12—H12119.7
C2—C3—H3119.9C11—C12—H12119.7
C5—C4—C3119.5 (3)C14—C13—C12120.6 (3)
C5—C4—H4120.3C14—C13—H13119.7
C3—C4—H4120.3C12—C13—H13119.7
C6—C5—C4121.2 (3)C13—C14—C15119.7 (3)
C6—C5—Br1119.3 (2)C13—C14—H14120.1
C4—C5—Br1119.5 (2)C15—C14—H14120.1
C5—C6—C1120.1 (3)C14—C15—C10121.3 (3)
C5—C6—H6120.0C14—C15—H15119.4
C1—C6—H6120.0C10—C15—H15119.4
O1—C7—H7A109.5O3—C16—H16A109.5
O1—C7—H7B109.5O3—C16—H16B109.5
H7A—C7—H7B109.5H16A—C16—H16B109.5
O1—C7—H7C109.5O3—C16—H16C109.5
H7A—C7—H7C109.5H16A—C16—H16C109.5
H7B—C7—H7C109.5H16B—C16—H16C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.89 (1)2.18 (2)2.997 (3)152 (3)

Symmetry codes: (i) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2816).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Çukurovalı, A., Yılmaz, I., Gür, S. & Kazaz, C. (2006). Eur. J. Med. Chem.41, 201–207. [PubMed]
  • Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707. [PMC free article] [PubMed]
  • Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481. [PMC free article] [PubMed]
  • Khattab, S. N. (2005). Molecules, 10, 1218–1228. [PubMed]
  • Küçükgüzel, S. G., Mazi, A., Şahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem.38, 1005–1013. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o688. [PMC free article] [PubMed]
  • Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography