PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1652–o1653.
Published online 2009 June 20. doi:  10.1107/S1600536809022569
PMCID: PMC2969351

4-Hydr­oxy-3-[(2E)-3-(3,4,5-trimethoxy­phen­yl)prop-2-eno­yl]-2H-chromen-2-one

Abstract

A new chalcone of the coumarin, C21H18O7, containing an annulated α-pyrone ring, was obtained by condensation of the borate complex of ac­yl(hydr­oxy)coumarin with trimethoxy­benzaldehyde. The structure exhibits intra­molecular hydrogen bonding between the hydroxyl oxygen and the ketonic oxygen in the coumarin group. The bicyclic coumarin fragment and the benzene ring form a dihedral angle of 17.1 (4)°. The crystal packing involves dimers inter­connected by C—H(...)O hydrogen bonding.

Related literature

For organic non-linear optical materials (NLO) of aromatic compounds with delocalized electron systems, see: Marcy et al. (1995 [triangle]); Zhengdong et al. (1997 [triangle]). For their non-linear susceptibilities, which are larger than those of inorganic optical materials, see: Chemla & Zyss (1987 [triangle]) and Lakshmana Perumal et al. (2002 [triangle]), and for their optical properties, see: Sarojini et al. (2006 [triangle]). For bond-length data, see: Traven et al.(2000 [triangle]). For the exclusive annulation of the α-pyrone ring, see Traven et al.(2007 [triangle]). For charge transfer from the phenyl ring to the coumarin system, see Indira et al. (2002 [triangle]); Sun & Cui (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1652-scheme1.jpg

Experimental

Crystal data

  • C21H18O7
  • M r = 382.35
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1652-efi1.jpg
  • a = 4.1370 (2) Å
  • b = 8.1247 (2) Å
  • c = 14.4101 (2) Å
  • α = 74.549 (10)°
  • β = 85.166 (10)°
  • γ = 81.205 (10)°
  • V = 460.87 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.16 × 0.13 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.981, T max = 0.99
  • 3575 measured reflections
  • 1974 independent reflections
  • 1200 reflections with I > 2σ(I)
  • R int = 0.038
  • 2 standard reflections frequency: 120 min intensity decay: 1.1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.136
  • S = 1.09
  • 1974 reflections
  • 257 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.12 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: CAD-4 EXPRESS (Duisenberg, 1992 [triangle]; Macíček & Yordanov, 1992 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022569/hg2517sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022569/hg2517Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Professor A. Driss is acknowledged for his contribution to the X-ray diffraction data collection at the Laboratoire de cristallochimie-Université Tunis ElManar.

supplementary crystallographic information

Comment

The non-linear optical materials (NLO) effect in the organic molecules originates from a strong electron-donor-acceptor intermolecular interaction, delocalized π-electron system (Marcy et al., 1995; Zhengdong et al.,1997), and also due to the ability to crystallize in non-centrosymmetric structures. Among several organic compounds reported for NLO properties, chalcone derivatives are noticeable materials for their excellent blue light transmittance and good crystallizability. They provide a necessary configuration to show NLO property with two planar rings connected through a conjugated double bond (Indira et al., 2002). Substitution on either of the phenyl rings greatly influence noncentrosymmetric crystal packing. A variety of organic NLO materials, aromatic compounds with delocalized π-electron systems and a large dipole moment have been synthesized to improve the non-linear susceptibilities larger than the inorganic optical materials (Chemla et al., 1987; Lakshmana et al., 2002). Recently, new chalcones which can find use as promising materials in photonics industries, have been synthesized and their second-harmonic generation efficiency was studied (Sarojini et al., 2006). In the present paper, we report the synthesis and the crystal structure of the trimethoxyphenyl-4-hydroxycoumarin chalcone (see Scheme). The linkage between coumarin system and phenyl ring (C13) is quite conjugated with bond lengths of C10–C11: 1.467 (6) Å, C11–C12: 1.329 (7) Å, and C12–C13: 1.471 (6) Å, suggesting that all non-hydrogen atoms between electron-donor and acceptor are highly conjugated, leading to a π-bridge for the charge transfer from phenyl ring to coumarin system (Sun et al., 2008). Consequently,the C10–O4 bond (1.290 (6) Å) is elongated as compared with its mean value found in 3–Acetyl–4 hydroxycoumarin (1.253 Å) (Traven et al., 2000) owing to the localization of the hydroxyl hydrogen (H4) between the ketonic oxygen O4 and the hydroxyl oxygen O3 (O3–H4: 1.22 (7) Å, O4— H4: 1.28 (7) Å) (Fig. 1). It should be noted that the C9–O2 bond length (1.210 (5) Å) is equal to its mean value 1.210 Å observed in 3–Acetyl–4 hydroxycoumarin (Traven et al., 2000).

The structure study shows intramolecular and intermolecular hydrogen bonds of the type C–H···O contributing to the cohesion of the crystal.

Experimental

It was established that the condensation of the borate complexes of acyl(hydroxy)coumarins (Traven et al., 2007) with carboxylic acid anhydrides led to exclusive annulation of the α-pyrone ring. First, we prepare the borate complex of 4-hydroxycoumarin by the reaction of boron trifluoride etherate (1 g, 7.3 mmol) with the 3-acetyl-4-hydroxycoumarin (1.5 g, 7.3 mmol) in toluene (25 ml). Then the new chalcone of coumarin, containing annulated α-pyrone ring, was obtained by reaction of the borate complex of acyl(hydroxy) coumarin (1 g, 3.9 mmol) with 3, 4, 5 trimethoxyphenylaldehyde (0.78 g, 3.9 mmol) in presence of piperidine (Fig. 2). By recrystallizing the crude product in chloroform (30 ml) we tried to remove BF2OH from the complex and a pale yellow crystals with appropriate formula were appeared. Yield: 1.26 g (85%). mp= 466 K, IR: ν 3368 (–OH), 1716(s) (>C=O), 1577 (C=C), 1018(s) (sym) (C—O—C); 1H NMR: δ (p.p.m.): 3.74(s,3H,OCH3), 3.85(s,6H,OCH3), 7.4–8.1(m, 10H, Ar—H+ Hethyl). 13C NMR (ppm): 55.9(OCH3), 60.1(OCH3), 191.2(CO); 180.7 (C4); 159.5 (C2); 100.6 (C3), 126.2–136.5 (Carom); 129.6 (Cethyl1), 153.3 (Cethyl2),

Refinement

The hydrogen atoms are fixed geometrically with the exception of the H4 where it is located from electron density difference map and is refined isotropically. In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1.
View of the title compound with atomic numbering. All atoms are shown with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
The synthesis steps of the title compund.

Crystal data

C21H18O7Z = 1
Mr = 382.35F(000) = 200
Triclinic, P1Dx = 1.378 Mg m3
Hall symbol: P 1Melting point: 466 K
a = 4.1370 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1247 (2) ÅCell parameters from 25 reflections
c = 14.4101 (2) Åθ = 10–15°
α = 74.549 (10)°µ = 0.10 mm1
β = 85.166 (10)°T = 293 K
γ = 81.205 (10)°Prism, pale yellow
V = 460.87 (4) Å30.16 × 0.13 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer1200 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
graphiteθmax = 27.0°, θmin = 2.6°
ω/2θ scansh = −5→5
Absorption correction: ψ scan (North et al., 1968)k = −10→10
Tmin = 0.981, Tmax = 0.99l = −18→18
3575 measured reflections2 standard reflections every 120 min
1974 independent reflections intensity decay: 1.1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0571P)2 + 0.0544P] where P = (Fo2 + 2Fc2)/3
1974 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.12 e Å3
3 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.2654 (9)−0.1096 (4)0.5125 (2)0.0645 (9)
C80.4138 (11)0.1778 (6)0.4904 (3)0.0540 (12)
O40.5686 (10)0.4521 (5)0.4679 (2)0.0763 (11)
C70.3170 (11)0.2208 (6)0.3944 (3)0.0540 (12)
C40.1785 (11)0.0992 (6)0.3577 (3)0.0529 (12)
O30.3412 (9)0.3741 (5)0.3374 (2)0.0727 (10)
O70.9754 (9)0.6931 (4)0.8955 (2)0.0676 (10)
C140.8343 (12)0.5498 (6)0.7785 (3)0.0574 (12)
H140.89040.63860.72680.069*
C150.8677 (11)0.5584 (6)0.8721 (3)0.0550 (12)
C50.1553 (11)−0.0634 (6)0.4199 (3)0.0563 (12)
C110.5772 (13)0.2864 (7)0.6294 (3)0.0620 (13)
H110.54080.18370.67370.074*
C180.6315 (12)0.2749 (6)0.8389 (3)0.0550 (12)
H180.55270.18100.82770.066*
C170.6645 (11)0.2824 (6)0.9330 (3)0.0574 (13)
C100.5255 (12)0.3065 (6)0.5273 (3)0.0557 (12)
O60.8319 (9)0.4264 (5)1.0432 (2)0.0717 (10)
O20.5147 (10)−0.0605 (5)0.6284 (2)0.0818 (12)
O50.5901 (9)0.1598 (4)1.0150 (2)0.0676 (10)
C160.7836 (12)0.4233 (7)0.9499 (3)0.0574 (12)
C130.7168 (11)0.4083 (6)0.7613 (3)0.0533 (12)
C120.6741 (12)0.4098 (6)0.6607 (3)0.0567 (12)
H120.72010.50800.61390.068*
C90.4048 (11)0.0011 (6)0.5495 (3)0.0561 (12)
C60.0243 (14)−0.1878 (8)0.3905 (4)0.0703 (14)
H60.0077−0.29550.43240.084*
C30.0705 (12)0.1366 (7)0.2638 (3)0.0658 (14)
H30.08570.24420.22160.079*
C2−0.0584 (14)0.0129 (8)0.2341 (4)0.0771 (17)
H2−0.13000.03740.17180.093*
C191.0800 (14)0.8268 (7)0.8172 (4)0.0708 (14)
H19A1.15210.91280.84210.106*
H19B0.90080.87840.77620.106*
H19C1.25730.77880.78080.106*
C210.4581 (15)0.0164 (7)1.0030 (4)0.0723 (15)
H21A0.4186−0.06021.06490.108*
H21B0.6104−0.04330.96500.108*
H21C0.25590.05550.97080.108*
C1−0.0816 (14)−0.1476 (9)0.2969 (4)0.0784 (16)
H1−0.1693−0.22980.27620.094*
C200.5788 (16)0.5207 (8)1.0864 (4)0.0821 (16)
H20A0.63440.51551.15060.123*
H20B0.37940.47241.08900.123*
H20C0.54950.63851.04920.123*
H40.478 (14)0.441 (7)0.387 (4)0.086 (17)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.080 (2)0.064 (2)0.0421 (17)−0.0060 (18)−0.0092 (15)−0.0010 (15)
C80.057 (3)0.063 (3)0.036 (2)0.003 (2)−0.0032 (19)−0.009 (2)
O40.113 (3)0.070 (2)0.0431 (19)−0.015 (2)−0.0111 (19)−0.0063 (17)
C70.058 (3)0.063 (3)0.033 (2)0.001 (2)0.005 (2)−0.005 (2)
C40.054 (3)0.062 (3)0.037 (2)0.004 (2)−0.006 (2)−0.010 (2)
O30.107 (3)0.069 (2)0.0371 (17)−0.009 (2)−0.0028 (17)−0.0052 (16)
O70.081 (3)0.067 (2)0.055 (2)−0.0096 (18)−0.0085 (17)−0.0155 (17)
C140.062 (3)0.055 (3)0.047 (2)0.005 (2)−0.004 (2)−0.006 (2)
C150.052 (3)0.065 (3)0.047 (3)0.007 (2)−0.013 (2)−0.020 (2)
C50.053 (3)0.069 (3)0.042 (2)0.002 (2)0.001 (2)−0.013 (2)
C110.073 (3)0.068 (3)0.039 (2)0.003 (3)−0.006 (2)−0.008 (2)
C180.066 (3)0.051 (3)0.044 (2)0.001 (2)−0.011 (2)−0.009 (2)
C170.064 (3)0.062 (3)0.046 (2)0.006 (2)−0.007 (2)−0.019 (2)
C100.065 (3)0.065 (3)0.031 (2)0.002 (2)−0.0040 (19)−0.007 (2)
O60.084 (2)0.086 (2)0.0477 (18)0.0038 (19)−0.0186 (17)−0.0248 (18)
O20.119 (3)0.074 (2)0.0463 (19)−0.012 (2)−0.031 (2)0.0023 (16)
O50.093 (3)0.069 (2)0.0383 (16)−0.0153 (19)−0.0088 (16)−0.0046 (15)
C160.063 (3)0.065 (3)0.040 (2)0.005 (2)−0.013 (2)−0.012 (2)
C130.059 (3)0.054 (3)0.042 (2)0.010 (2)−0.009 (2)−0.012 (2)
C120.069 (3)0.062 (3)0.035 (2)0.000 (2)−0.009 (2)−0.008 (2)
C90.060 (3)0.062 (3)0.043 (3)−0.007 (2)−0.006 (2)−0.008 (2)
C60.072 (3)0.077 (3)0.062 (3)−0.014 (3)0.008 (3)−0.018 (3)
C30.066 (3)0.090 (4)0.040 (2)−0.003 (3)−0.008 (2)−0.016 (2)
C20.071 (4)0.107 (5)0.048 (3)0.001 (3)−0.011 (3)−0.016 (3)
C190.073 (4)0.073 (3)0.062 (3)−0.006 (3)−0.014 (3)−0.010 (3)
C210.094 (4)0.073 (3)0.051 (3)−0.022 (3)0.002 (3)−0.013 (3)
C10.071 (4)0.102 (5)0.072 (4)−0.013 (3)−0.006 (3)−0.039 (3)
C200.097 (4)0.095 (4)0.054 (3)−0.003 (3)0.000 (3)−0.026 (3)

Geometric parameters (Å, °)

O1—C91.375 (6)C17—O51.375 (6)
O1—C51.384 (5)C17—C161.397 (6)
C8—C71.410 (6)O6—C161.383 (5)
C8—C101.440 (7)O6—C201.403 (6)
C8—C91.466 (6)O2—C91.210 (5)
O4—C101.290 (6)O5—C211.415 (6)
O4—H41.28 (7)C13—C121.471 (6)
C7—O31.310 (5)C12—H120.9300
C7—C41.445 (6)C6—C11.392 (8)
C4—C51.396 (6)C6—H60.9300
C4—C31.402 (6)C3—C21.381 (8)
O3—H41.22 (7)C3—H30.9300
O7—C151.372 (6)C2—C11.387 (9)
O7—C191.431 (6)C2—H20.9300
C14—C151.389 (6)C19—H19A0.9600
C14—C131.401 (7)C19—H19B0.9600
C14—H140.9300C19—H19C0.9600
C15—C161.406 (6)C21—H21A0.9600
C5—C61.388 (7)C21—H21B0.9600
C11—C121.329 (7)C21—H21C0.9600
C11—C101.467 (6)C1—H10.9300
C11—H110.9300C20—H20A0.9600
C18—C171.392 (6)C20—H20B0.9600
C18—C131.398 (6)C20—H20C0.9600
C18—H180.9300
C9—O1—C5122.3 (4)C18—C13—C14119.8 (4)
C7—C8—C10119.6 (4)C18—C13—C12122.2 (4)
C7—C8—C9118.8 (4)C14—C13—C12118.0 (4)
C10—C8—C9121.7 (4)C11—C12—C13127.2 (4)
C10—O4—H4104 (3)C11—C12—H12116.4
O3—C7—C8120.7 (4)C13—C12—H12116.4
O3—C7—C4118.4 (4)O2—C9—O1115.4 (4)
C8—C7—C4120.9 (4)O2—C9—C8126.4 (5)
C5—C4—C3119.3 (4)O1—C9—C8118.2 (4)
C5—C4—C7117.4 (4)C5—C6—C1118.5 (5)
C3—C4—C7123.3 (4)C5—C6—H6120.8
C7—O3—H4102 (3)C1—C6—H6120.8
C15—O7—C19116.8 (4)C2—C3—C4119.7 (5)
C15—C14—C13120.5 (4)C2—C3—H3120.1
C15—C14—H14119.8C4—C3—H3120.1
C13—C14—H14119.8C3—C2—C1120.3 (5)
O7—C15—C14124.4 (4)C3—C2—H2119.9
O7—C15—C16116.2 (4)C1—C2—H2119.9
C14—C15—C16119.4 (4)O7—C19—H19A109.5
O1—C5—C6116.8 (4)O7—C19—H19B109.5
O1—C5—C4122.1 (4)H19A—C19—H19B109.5
C6—C5—C4121.1 (4)O7—C19—H19C109.5
C12—C11—C10122.3 (5)H19A—C19—H19C109.5
C12—C11—H11118.9H19B—C19—H19C109.5
C10—C11—H11118.9O5—C21—H21A109.5
C17—C18—C13120.1 (4)O5—C21—H21B109.5
C17—C18—H18120.0H21A—C21—H21B109.5
C13—C18—H18120.0O5—C21—H21C109.5
O5—C17—C18125.6 (4)H21A—C21—H21C109.5
O5—C17—C16114.5 (4)H21B—C21—H21C109.5
C18—C17—C16120.0 (4)C2—C1—C6121.0 (5)
O4—C10—C8118.3 (4)C2—C1—H1119.5
O4—C10—C11117.4 (5)C6—C1—H1119.5
C8—C10—C11124.2 (4)O6—C20—H20A109.5
C16—O6—C20115.6 (4)O6—C20—H20B109.5
C17—O5—C21117.3 (4)H20A—C20—H20B109.5
O6—C16—C17119.9 (4)O6—C20—H20C109.5
O6—C16—C15119.9 (4)H20A—C20—H20C109.5
C17—C16—C15120.2 (4)H20B—C20—H20C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H4···O41.22 (6)1.28 (6)2.437 (5)153 (5)
C2—H2···O5i0.932.523.427 (6)167
C20—H20B···O6ii0.962.523.439 (8)160
C19—H19C···O2iii0.962.483.135 (7)125
C11—H11···O20.932.272.873 (7)122
C12—H12···O40.932.422.772 (5)102

Symmetry codes: (i) x−1, y, z−1; (ii) x−1, y, z; (iii) x+1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2517).

References

  • Chemla, D. S. & Zyss, J. (1987). Non-linear Optical Properties of Organic Molecules and Crystals, Vol. 1. London: Academic Press.
  • Duisenberg, A. J. M. (1992). J. Appl. Cryst.25, 92–96.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.
  • Lakshmana Perumal, C. K., Arulchakkaravarthi, A., Santhanaraghavan, P. & Ramaswami, P. (2002). J. Cryst. Growth, 240, 212–217.
  • Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst.25, 73–80.
  • Marcy, H. O., Rosker, M. J., Warren, L. F., Cunningham, P. H., Thomas, C. A., Deloach, L. A., Ebbers, S. P., Liao, J. H. & Konatzidis, M. G. (1995). Opt. Lett.20, 252–254. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sun, Y.-F. & Cui, Y.-P. (2008). Dyes Pigments, 78, 65–76.
  • Traven, V. F., Manaev, A. V., Safronova, O. B., Chibisova, T. A., Lyssenko, K. A. & Antipin, M. Yu. (2000). Zh. Obshch. Khim. (Russ. J. Gen. Chem.), 70, 853–856.
  • Traven, V. F., Manaev, A. V., Voevodina, I. V. & Podkhalyuzina, N. Ya. (2007). Chem. Heterocycl. Compds, 43, 416–420.
  • Zhengdong, L., Baichang, W. & Genbo, S. (1997). J. Cryst. Growth, 178, 539–545.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography