PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1621–o1622.
Published online 2009 June 20. doi:  10.1107/S1600536809022892
PMCID: PMC2969343

2-(1H-Benzimidazol-1-yl)-1-(2-fur­yl)ethanone O-ethyl­oxime

Abstract

In the mol­ecule of the title compound, C15H15N3O2, the planar benzimidazole ring system [maximum deviation = 0.023 (2) Å] is oriented at a dihedral angle of 74.21 (5)° with respect to the furan ring. In the crystal structure, inter­molecular C—H(...)N inter­actions link the mol­ecules into centrosymmetric R 2 2(18) dimers. In addition, the structure is stabilized by π–π contacts between parallel imidazole rings [centroid–centroid distance = 3.726 (1) Å] and a weak C—H(...)π inter­action.

Related literature

For general background to oximes and oxime ethers and their biological activity, see: Baji et al. (1995 [triangle]); Bhandari et al. (2009 [triangle]); Emami et al. (2002 [triangle], 2004 [triangle]); Milanese et al. (2007 [triangle]); Polak (1982 [triangle]); Porretta et al. (1993 [triangle]); Ramalingan et al. (2006 [triangle]); Rossello et al. (2002 [triangle]). For related structures, see: Özel Güven et al. (2007a [triangle],b [triangle], 2009a [triangle],b [triangle]). For ring-motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1621-scheme1.jpg

Experimental

Crystal data

  • C15H15N3O2
  • M r = 269.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1621-efi1.jpg
  • a = 8.4448 (5) Å
  • b = 17.6345 (11) Å
  • c = 10.3147 (6) Å
  • β = 110.755 (2)°
  • V = 1436.38 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.40 × 0.25 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.967, T max = 0.979
  • 16676 measured reflections
  • 3742 independent reflections
  • 2291 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.140
  • S = 1.03
  • 3742 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022892/xu2539sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022892/xu2539Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Zonguldak Karaelmas University Research Fund (Project No. 2007/2–13–02–09).

supplementary crystallographic information

Comment

Oximes and oxime ethers show very important antifungal and antibacterial activities. Oxiconazole is a well established drug for treatment of many mycotic infections, having an oxime group (Polak, 1982). Several compounds containing an oxime or an oxime ether function have been reported to exhibit antimicrobial activity (Porretta et al., 1993; Baji et al., 1995; Rossello et al., 2002; Emami et al., 2002; Emami et al., 2004; Ramalingan et al., 2006; Milanese et al., 2007; Bhandari et al., 2009). In our earlier studies, we reported X-ray structures of benzimidazole substituted oxiconazole derivatives (Özel Güven et al., 2007a; Özel Güven et al., 2009a; Özel Güven et al., 2009b). Now, we report herein the crystal structure of the title alkyl oxime ether.

In the molecule of the title compound (Fig. 1), the bond lengths and angles are generally within normal ranges. The planar benzimidazole ring system [with a maximum deviation of 0.023 (2) Å for atom C5] is oriented with respect to the furan ring at a dihedral angle of 74.21 (5)°. Atoms C8, C9 and N3 are -0.066 (2), 0.001 (1) and 0.055 (1) Å away from the furan ring plane, respectively, while atom C8 is at a distance of 0.006 (2) Å to the benzimidazole ring plane. So, they are coplanar with the adjacent rings. The N1—C1—N2 [114.46 (16)°], N2—C2—C7 [110.10 (15)°], C2—C7—C6 [122.57 (15)°], C3—C4—C5 [121.26 (18)°] and C4—C5—C6 [121.86 (18)°] bond angles are enlarged, while C5—C6—C7 [116.19 (17)°] and C2—C3—C4 [118.29 (17)°] bond angles are narrowed.

In the crystal structure, intermolecular C—H···N interactions (Table 1) link the molecules into centrosymmetric dimers through R22(18) ring motifs (Bernstein et al., 1995) (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contact between the imidazole rings, Cg1—Cg1i, [symmetry code: (i) 1 - x, -y, 1 - z, where Cg1 is centroid of the ring (N1/N2/C1/C2/C7)] may further stabilize the structure, with centroid-centroid distance of 3.726 (1) Å. A weak C—H···π interaction (Table 1) is also found.

Experimental

The title compound was synthesized by the reaction of 2-(1H-benzimidazol-1-yl)-1-(furan-2-yl)ethanone oxime obtained from 2-(1H-benzimidazol-1-yl)-1-(furan-2-yl)ethanone (Özel Güven et al., 2007b) with ethyl iodide and NaH. To a solution of 2-(1H-benzimidazol-1-yl)-1-(furan-2-yl)ethanone oxime (400 mg, 1.658 mmol) in DMF (5 ml) was added NaH (66 mg, 1.658 mmol) in small fractions. Then, ethyl iodide (259 mg, 1.658 mmol) was added dropwise. The mixture was stirred at room temperature for 3 h and the excess of hydride was decomposed with a small amount of methyl alcohol. After evaporation to dryness under reduced pressure, the crude residue was suspended with water and extracted with methylene chloride. The organic layer was dried over anhydrous sodium sulfate and then evaporated to dryness. The crude residue was purified by chromatography on a silica-gel column using chloroform and recrystallized from hexane-ethyl acetate (1:3) mixture to obtain yellow crystals (yield; 270 mg, 61%).

Refinement

H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C15H15N3O2F(000) = 568
Mr = 269.30Dx = 1.245 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1232 reflections
a = 8.4448 (5) Åθ = 2.3–28.8°
b = 17.6345 (11) ŵ = 0.09 mm1
c = 10.3147 (6) ÅT = 296 K
β = 110.755 (2)°Block, yellow
V = 1436.38 (15) Å30.40 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer3742 independent reflections
Radiation source: fine-focus sealed tube2291 reflections with I > 2σ(I)
graphiteRint = 0.027
ω scansθmax = 28.8°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −11→7
Tmin = 0.967, Tmax = 0.979k = −23→19
16676 measured reflectionsl = −12→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0597P)2 + 0.249P] where P = (Fo2 + 2Fc2)/3
3742 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.07624 (14)0.47405 (6)0.69126 (11)0.0587 (3)
O20.12331 (14)0.34870 (6)0.45867 (12)0.0620 (3)
N10.30309 (17)0.45287 (7)0.87568 (13)0.0525 (3)
N20.2926 (2)0.43475 (9)1.08660 (15)0.0735 (5)
N30.23041 (17)0.39663 (8)0.55862 (13)0.0544 (3)
C10.2331 (2)0.47207 (11)0.97034 (18)0.0672 (5)
H10.14940.50890.95380.081*
C20.4123 (2)0.38660 (10)1.06784 (16)0.0561 (4)
C30.5178 (2)0.33399 (11)1.15764 (18)0.0691 (5)
H30.51260.32571.24510.083*
C40.6289 (3)0.29490 (12)1.1144 (2)0.0752 (5)
H40.70020.25941.17320.090*
C50.6378 (2)0.30710 (12)0.9839 (2)0.0756 (5)
H50.71680.28020.95830.091*
C60.5329 (2)0.35802 (10)0.89142 (19)0.0629 (4)
H60.53730.36550.80350.076*
C70.42077 (19)0.39732 (8)0.93684 (15)0.0489 (4)
C80.2629 (2)0.48404 (9)0.73688 (16)0.0545 (4)
H8A0.36720.49310.72000.065*
H8B0.20600.53240.73130.065*
C90.15179 (19)0.43200 (8)0.62662 (14)0.0461 (3)
C10−0.02592 (19)0.42668 (8)0.60758 (15)0.0460 (3)
C11−0.1609 (2)0.38634 (9)0.52731 (17)0.0564 (4)
H11−0.16160.35010.46160.068*
C12−0.3007 (2)0.40962 (11)0.5621 (2)0.0674 (5)
H12−0.41120.39180.52370.081*
C13−0.2438 (2)0.46193 (11)0.6602 (2)0.0679 (5)
H13−0.31020.48690.70200.081*
C140.2185 (2)0.31439 (13)0.3830 (2)0.0813 (6)
H14A0.31350.28630.44600.098*
H14B0.26250.35340.33860.098*
C150.1095 (3)0.26391 (19)0.2798 (3)0.1340 (12)
H15A0.17420.23820.23310.201*
H15B0.02060.29260.21360.201*
H15C0.06100.22730.32380.201*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0639 (7)0.0630 (7)0.0511 (6)0.0017 (5)0.0226 (5)−0.0089 (5)
O20.0581 (7)0.0677 (7)0.0577 (7)0.0012 (6)0.0173 (5)−0.0193 (6)
N10.0589 (8)0.0543 (7)0.0408 (7)−0.0030 (6)0.0136 (6)−0.0069 (6)
N20.0865 (11)0.0894 (11)0.0453 (8)0.0104 (9)0.0241 (8)−0.0082 (8)
N30.0554 (7)0.0591 (8)0.0453 (7)−0.0013 (6)0.0136 (6)−0.0042 (6)
C10.0761 (12)0.0722 (11)0.0518 (10)0.0112 (9)0.0210 (9)−0.0116 (9)
C20.0597 (9)0.0634 (10)0.0400 (8)−0.0069 (8)0.0112 (7)−0.0092 (7)
C30.0748 (12)0.0795 (12)0.0429 (9)−0.0053 (10)0.0083 (8)0.0017 (8)
C40.0676 (11)0.0768 (12)0.0647 (12)0.0044 (10)0.0029 (10)0.0055 (10)
C50.0636 (11)0.0796 (13)0.0809 (14)0.0112 (10)0.0222 (10)−0.0037 (11)
C60.0611 (10)0.0722 (11)0.0578 (10)−0.0017 (9)0.0239 (8)−0.0043 (9)
C70.0477 (8)0.0516 (8)0.0420 (8)−0.0091 (7)0.0094 (6)−0.0069 (6)
C80.0619 (10)0.0515 (9)0.0470 (9)−0.0101 (7)0.0153 (7)−0.0003 (7)
C90.0551 (9)0.0438 (7)0.0374 (8)−0.0002 (6)0.0141 (6)0.0044 (6)
C100.0577 (9)0.0420 (7)0.0389 (8)0.0011 (6)0.0180 (6)0.0014 (6)
C110.0615 (10)0.0527 (9)0.0552 (9)−0.0061 (7)0.0210 (8)−0.0052 (7)
C120.0580 (10)0.0751 (11)0.0709 (12)−0.0095 (9)0.0252 (9)−0.0033 (10)
C130.0632 (11)0.0810 (12)0.0684 (12)0.0060 (9)0.0342 (9)0.0004 (10)
C140.0680 (12)0.0984 (15)0.0776 (13)0.0098 (11)0.0257 (10)−0.0302 (12)
C150.0854 (16)0.165 (3)0.138 (2)0.0083 (17)0.0234 (16)−0.097 (2)

Geometric parameters (Å, °)

O1—C101.3723 (17)C7—C61.382 (2)
O1—C131.352 (2)C8—H8A0.9700
O2—N31.3909 (16)C8—H8B0.9700
O2—C141.438 (2)C9—N31.285 (2)
N1—C11.351 (2)C9—C81.503 (2)
N1—C71.379 (2)C9—C101.446 (2)
N1—C81.457 (2)C10—C111.350 (2)
N2—C11.303 (2)C11—C121.411 (2)
C1—H10.9300C11—H110.9300
C2—N21.385 (2)C12—H120.9300
C2—C31.388 (2)C13—C121.328 (3)
C3—C41.361 (3)C13—H130.9300
C3—H30.9300C14—C151.442 (3)
C4—H40.9300C14—H14A0.9700
C5—C41.391 (3)C14—H14B0.9700
C5—H50.9300C15—H15A0.9600
C6—C51.379 (3)C15—H15B0.9600
C6—H60.9300C15—H15C0.9600
C7—C21.391 (2)
C13—O1—C10106.63 (13)C9—C8—H8A109.2
N3—O2—C14108.44 (12)C9—C8—H8B109.2
C1—N1—C7106.03 (13)H8A—C8—H8B107.9
C1—N1—C8127.31 (15)N3—C9—C8113.87 (14)
C7—N1—C8126.65 (13)N3—C9—C10127.33 (14)
C1—N2—C2104.09 (14)C10—C9—C8118.81 (13)
C9—N3—O2111.93 (13)O1—C10—C9114.39 (13)
N1—C1—H1122.8C11—C10—O1108.92 (13)
N2—C1—N1114.46 (16)C11—C10—C9136.69 (14)
N2—C1—H1122.8C10—C11—C12106.94 (15)
N2—C2—C3130.09 (16)C10—C11—H11126.5
N2—C2—C7110.10 (15)C12—C11—H11126.5
C3—C2—C7119.80 (16)C11—C12—H12126.7
C2—C3—H3120.9C13—C12—C11106.65 (16)
C4—C3—C2118.29 (17)C13—C12—H12126.7
C4—C3—H3120.9O1—C13—H13124.6
C3—C4—C5121.26 (18)C12—C13—O1110.85 (16)
C3—C4—H4119.4C12—C13—H13124.6
C5—C4—H4119.4O2—C14—C15109.09 (17)
C4—C5—H5119.1O2—C14—H14A109.9
C6—C5—C4121.86 (18)O2—C14—H14B109.9
C6—C5—H5119.1C15—C14—H14A109.9
C5—C6—C7116.19 (17)C15—C14—H14B109.9
C5—C6—H6121.9H14A—C14—H14B108.3
C7—C6—H6121.9C14—C15—H15A109.5
N1—C7—C6132.10 (15)C14—C15—H15B109.5
N1—C7—C2105.31 (14)C14—C15—H15C109.5
C6—C7—C2122.57 (15)H15A—C15—H15B109.5
N1—C8—C9112.26 (12)H15A—C15—H15C109.5
N1—C8—H8A109.2H15B—C15—H15C109.5
N1—C8—H8B109.2
C13—O1—C10—C9179.95 (13)C7—C6—C5—C41.3 (3)
C13—O1—C10—C11−0.15 (17)N1—C7—C2—N2−0.25 (18)
C10—O1—C13—C120.1 (2)N1—C7—C2—C3−179.41 (14)
C14—O2—N3—C9177.14 (15)C6—C7—C2—N2178.33 (15)
N3—O2—C14—C15179.4 (2)C6—C7—C2—C3−0.8 (2)
C7—N1—C1—N2−0.1 (2)N1—C7—C6—C5177.93 (16)
C8—N1—C1—N2179.70 (15)C2—C7—C6—C5−0.2 (2)
C1—N1—C7—C20.23 (17)C8—C9—N3—O2179.48 (11)
C1—N1—C7—C6−178.15 (17)C10—C9—N3—O2−0.6 (2)
C8—N1—C7—C2−179.61 (14)N3—C9—C8—N1−104.67 (16)
C8—N1—C7—C62.0 (3)C10—C9—C8—N175.41 (17)
C1—N1—C8—C9−102.12 (19)N3—C9—C10—O1−177.03 (14)
C7—N1—C8—C977.69 (19)N3—C9—C10—C113.1 (3)
C2—N2—C1—N10.0 (2)C8—C9—C10—O12.88 (18)
C3—C2—N2—C1179.21 (18)C8—C9—C10—C11−176.98 (17)
C7—C2—N2—C10.16 (19)O1—C10—C11—C120.16 (18)
N2—C2—C3—C4−178.13 (18)C9—C10—C11—C12−179.97 (17)
C7—C2—C3—C40.8 (3)C10—C11—C12—C13−0.1 (2)
C2—C3—C4—C50.2 (3)O1—C13—C12—C110.0 (2)
C6—C5—C4—C3−1.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13···N2i0.932.543.328 (2)143
C14—H14A···Cg2ii0.972.883.768 (2)153

Symmetry codes: (i) −x, −y+1, −z+2; (ii) x, −y−1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2539).

References

  • Baji, H., Flammang, M., Kimny, T., Gasquez, F., Compagnon, P. L. & Delcourt, A. (1995). Eur. J. Med. Chem.30, 617–626.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bhandari, K., Srinivas, N., Shiva Keshava, G. B. & Shukla, P. K. (2009). Eur. J. Med. Chem.44, 437–447. [PubMed]
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Emami, S., Falahatti, M., Banifatemi, A., Moshiri, K. & Shafiee, A. (2002). Arch. Pharm.335, 318–324. [PubMed]
  • Emami, S., Falahatti, M., Banifatemi, A., Moshiri, K. & Shafiee, A. (2004). Bioorg. Med. Chem.12, 5881–5889. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Milanese, L., Giacche, N., Schiaffella, F., Vecchiarelli, A., Macchiarulo, A. & Fringuelli, R. (2007). ChemMedChem, 2, 1208–1213. [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Çaylak, N. & Hökelek, T. (2007a). Acta Cryst. E63, o4090–o4091.
  • Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2009a). Acta Cryst. E65, o1517–o1518. [PMC free article] [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2009b). Acta Cryst. E65, o1604–o1605. [PMC free article] [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem.44, 731–734.
  • Polak, A. (1982). Arzneim. Forsch. Drug. Res.32, 17–24. [PubMed]
  • Porretta, G. C., Fioravanti, R., Biava, M., Cirilli, R., Simonetti, N., Villa, A., Bello, U., Faccendini, P. & Tita, B. (1993). Eur. J. Med. Chem.28, 749–760.
  • Ramalingan, C., Park, Y. T. & Kabilan, S. (2006). Eur. J. Med. Chem.41, 683–696. [PubMed]
  • Rossello, A., Bertini, S., Lapucci, A., Macchia, M., Martinelli, A., Rapposelli, S., Herreros, E. & Macchia, B. (2002). J. Med. Chem.45, 4903–4912. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography