PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1616–o1617.
Published online 2009 June 20. doi:  10.1107/S1600536809022399
PMCID: PMC2969338

N,N′,N′′-Tris(2-nitro­benz­yl)-2,2′,2′′-nitrilo­triethan­aminium trichloride 1.41-hydrate

Abstract

The title compound, C27H36N7O6 3+·3Cl1.41H2O, is the hydro­chloride of a tripodal amine, and was structurally characterized because the free base, used as a ligand in podate complexes, is an oily material. In the cation, the secondary amine groups are protonated, and, despite the induced Coulombic repulsions, a claw-like conformation is stabilized, with a cavity approximating C 3 point symmetry. Such a topology, with the lone pair of the tertiary N atom placed inside the cavity, allows the encapsulation of guest species. Indeed, three chloride counter-ions balance the charges, one of which is located inside the cation cavity and is strongly bonded to the NH2 + groups. The asymmetric unit is completed by two water mol­ecules with occupancies 0.793 (11) and 0.621 (9). The crystal structure is formed by a complex network of efficient N—H(...)Cl and O—H(...)Cl hydrogen bonds. One nitro group also forms weak contacts with a water mol­ecule.

Related literature

For related tripodal amine structures, see: Hossain et al. (2004 [triangle]); Coyle et al. (2006 [triangle]); McKee et al. (2006 [triangle]); Lakshminarayanan et al. (2007 [triangle]); For the role of electron-withdrawing groups in these mol­ecules, see: Bryantsev & Hay (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1616-scheme1.jpg

Experimental

Crystal data

  • C27H36N7O6 3+·3Cl·1.41H2O
  • M r = 686.47
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1616-efi7.jpg
  • a = 9.131 (2) Å
  • b = 13.009 (4) Å
  • c = 28.071 (7) Å
  • β = 94.190 (9)°
  • V = 3326 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.33 mm−1
  • T = 298 K
  • 0.50 × 0.42 × 0.24 mm

Data collection

  • Siemens P4 diffractometer
  • Absorption correction: ψ scan (XSCANS; Siemens, 1996 [triangle]) T min = 0.819, T max = 0.924
  • 16115 measured reflections
  • 6712 independent reflections
  • 4181 reflections with I > 2σ(I)
  • R int = 0.042
  • 3 standard reflections every 97 reflections intensity decay: 3.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.175
  • S = 1.03
  • 6712 reflections
  • 438 parameters
  • 12 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: XSCANS (Siemens, 1996 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022399/im2103sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022399/im2103Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Dr Amparo Salmerón Valverde (BUAP, Mexico) for measuring the IR spectrum of the title salt. The authors acknowledge the Facultad de Ciencias Químicas (UANL, Mexico) and PAYCyT for financial support (project CA1260–06).

supplementary crystallographic information

Comment

Tris(2-aminoethyl)amine (tren) derivatives are common starting materials for the synthesis of tripodal ligands used as podants in coordination chemistry (Coyle et al., 2006). They are also used as anions receptors aiming at the design of molecules acting as selective anion bindig sites (Hossain et al., 2004). On the other hand, for tren-based molecules bearing an aryl group, it has been shown that substitution of aryl with electron withdrawing groups enhances the stability of anions complexes (Bryantsev & Hay, 2005). Following this idea, we prepared tris[(2-nitrobenzylamino)ethyl]amine by reduction of the corresponding Schiff base, tris[(2-nitrobenzylideneamino)ethyl]amine, which had been previously characterized by X-ray diffraction (McKee et al., 2006). However, as the free base is an oil, we transformed the amine into its hydrochloride salt, (I), and now report its X-ray structure.

The asymmetric unit (Fig. 1) contains one cation and three chloride ions balancing the charges, as expected. Two sites are occupied by water molecules, for which occupancies converged to 0.79 (11) and 0.621 (9). All atoms are placed in general positions. The presence of lattice water molecules is confirmed by IR spectroscopy, as well as by the consistent network of hydrogen bonds involving all H atoms of water molecules. The three secondary amine groups of the tren derivative are protonated, generating strong Coulombic repulsions within the cation. However, a claw-like conformation is stabilized, since a Cl- ion is placed inside the cavity and forms three strong hydrogen bonds with all NH2+ groups. Such a behaviour is not systematically observed with closely related cations. For example, tris(2-benzylammonioethyl)amine cation has been crystallized with bromide or phosphate, and X-ray studies revealed that in both cases cations approximate a trigonal planar shape (Hossain et al., 2004). In the same way, the free Schiff base used as starting material for (I) is a planar molecule with crystallographic C3 symmetry (space group R3, McKee et al., 2006). In contrast, the same cation including pentafluorobenzyl groups in place of benzyl encapsulates Cl- or Br- ions (Lakshminarayanan et al., 2007), as (I) does.

The supramolecular network formed by cations, anions, and water molecules in (I) is a complex arrangement of N—H···Cl and O—H···Cl hydrogen bonds. The most important, as commented above, are the NH2+···Cl1 strong hydrogen bonds allowing the anion encapsulation in the cationic cavity. Chloride ions placed outside this cavity are also connected to NH2+ functional groups via hydrogen bonds, one of which being intermolecular. In the asymmetric unit, water molecules also serve as donor for O—H···Cl hydrogen bonds (Fig. 2). One nitro group also forms weak intermolecular contacts with the water molecule O7.

Experimental

Tris[(2-nitrobenzylideneamino)ethyl]amine (12.461 g, 27 mmol) was dispersed in methanol (40 ml). To achieve selective reduction, an amount of NaBH4 (3.643 g, 96 mmol) was added in small portions at 298 K under stirring. After reduction was completed, solvent was removed and then the reduction product, tris[(2-nitrobenzylamino)ethyl]amine, was extracted with CHCl3 (2 × 10 ml) and water (20 ml). The organic phase was dried over MgSO4. Evaporation of the solvent under reduced pressure afforded the free base as a pale yellow oil (yield: 91%). This compound was dissolved in ethanol and HCl was added until the title white salt [m.p. 503.5–504.5 K (dec.)] had completely precipitated. Suitable single crystals were obtained by evaporation of an ethanol-water (19:1) mixture.

Refinement

From the IR spectrum of the single-crystal used for X-ray diffraction, it was assumed that an amount of water was present in the sample. Sites for disordered water molecules and chloride ions were inferred from H atoms positions, found in a difference map. Occupancies for water molecules were refined, and converged to 0.79 (1) and 0.621 (9) for O7 and O8. Some O atoms belonging to nitro groups display high displacement parameters, but attempts to resolve disordered sites were unsuccessful. N–bonded H atoms were found in a difference map, confirming the charge of the cation to be +3. All O– and N–bonded H atoms were refined freely, although the geometry was restrained to suitable target values: O—H = 0.85 (1) Å, H···H = 1.34 (2) Å, and N—H = 0.90 (1) Å. Other H atoms were placed in idealized positions and refined as riding to their parent atoms, with bond lengths fixed to 0.97 (methylene) or 0.93 Å (aromatic). Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.5 Ueq(carrier atom) for water molecules and Uiso(H) = 1.2 Ueq(carrier atom) otherwise.

Figures

Fig. 1.
The asymmetric unit of (I). Displacement ellipsoids are shown at the 25% probability level.
Fig. 2.
A part of the crystal structure of (I). Three symmetry-related cations are represented, omitting H atoms not involved in the supramolecular network. Hydrogen bonds are represented by dashed lines, and weak contacts involving nitro groups have been omitted ...

Crystal data

C27H36N7O63+·3Cl·1.41H2OF(000) = 1441
Mr = 686.47Dx = 1.371 Mg m3
Monoclinic, P21/nMelting point: 503.5–504.5 (dec.) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.131 (2) ÅCell parameters from 69 reflections
b = 13.009 (4) Åθ = 4.6–12.5°
c = 28.071 (7) ŵ = 0.33 mm1
β = 94.190 (9)°T = 298 K
V = 3326 (2) Å3Block, colorless
Z = 40.50 × 0.42 × 0.24 mm

Data collection

Siemens P4 diffractometer4181 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
graphiteθmax = 26.3°, θmin = 2.1°
2θ/ω scansh = −11→10
Absorption correction: ψ scan (XSCANS; Siemens, 1996)k = −16→1
Tmin = 0.819, Tmax = 0.924l = −34→34
16115 measured reflections3 standard reflections every 97 reflections
6712 independent reflections intensity decay: 3.5%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0754P)2 + 1.5076P] where P = (Fo2 + 2Fc2)/3
6712 reflections(Δ/σ)max < 0.001
438 parametersΔρmax = 0.34 e Å3
12 restraintsΔρmin = −0.34 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
N10.9829 (3)0.79136 (19)0.17125 (9)0.0624 (6)
C10.9926 (4)0.8169 (3)0.22199 (11)0.0701 (8)
H1A0.99770.89110.22530.084*
H1B1.08310.78870.23680.084*
C20.8671 (4)0.7782 (3)0.24840 (11)0.0690 (8)
H2A0.84670.70740.23930.083*
H2B0.89450.77970.28240.083*
N20.7313 (3)0.8412 (2)0.23819 (8)0.0586 (6)
H2C0.758 (3)0.9045 (12)0.2481 (11)0.070*
H2D0.706 (3)0.844 (2)0.2064 (4)0.070*
C30.6071 (4)0.7981 (2)0.26312 (11)0.0668 (8)
H3A0.64160.78070.29560.080*
H3B0.57400.73520.24720.080*
C40.4792 (3)0.8706 (2)0.26437 (10)0.0588 (7)
C50.4586 (4)0.9520 (2)0.23318 (11)0.0682 (8)
H5A0.52560.96240.21020.082*
C60.3408 (4)1.0185 (3)0.23509 (13)0.0733 (9)
H6A0.32841.07140.21290.088*
C70.2432 (4)1.0077 (3)0.26895 (13)0.0736 (9)
H7A0.16511.05330.27020.088*
C80.2608 (4)0.9293 (3)0.30119 (12)0.0725 (9)
H8A0.19570.92160.32490.087*
C90.3756 (4)0.8620 (2)0.29820 (10)0.0623 (8)
N30.3838 (4)0.7755 (3)0.33158 (12)0.0856 (9)
O10.3524 (4)0.7895 (3)0.37214 (12)0.1437 (14)
O20.4250 (4)0.6941 (2)0.31824 (11)0.1107 (10)
C111.0831 (4)0.8554 (3)0.14559 (14)0.0763 (9)
H11A1.09750.82340.11510.092*
H11B1.17770.85730.16370.092*
C121.0314 (4)0.9638 (3)0.13682 (15)0.0869 (11)
H12A1.01140.99500.16700.104*
H12B1.10911.00300.12350.104*
N120.8964 (3)0.9694 (2)0.10352 (11)0.0709 (7)
H12C0.907 (4)0.923 (2)0.0803 (9)0.085*
H12D0.825 (3)0.943 (3)0.1206 (11)0.085*
C130.8715 (4)1.0771 (3)0.08618 (13)0.0800 (10)
H13A0.94841.09550.06570.096*
H13B0.87851.12330.11340.096*
C140.7249 (4)1.0919 (2)0.05908 (11)0.0671 (8)
C150.7256 (4)1.0997 (3)0.01013 (12)0.0784 (10)
H15A0.81391.0911−0.00390.094*
C160.6024 (6)1.1193 (3)−0.01819 (15)0.0926 (12)
H16A0.60721.1236−0.05110.111*
C170.4729 (5)1.1328 (3)0.00097 (16)0.0919 (12)
H17A0.38911.1470−0.01880.110*
C180.4635 (4)1.1258 (3)0.04915 (17)0.0858 (11)
H18A0.37371.13420.06230.103*
C190.5905 (4)1.1060 (2)0.07840 (12)0.0712 (9)
N130.5780 (6)1.1031 (2)0.12976 (14)0.0969 (11)
O30.4647 (6)1.1270 (4)0.14496 (16)0.1638 (18)
O40.6834 (5)1.0783 (2)0.15623 (10)0.1092 (10)
C211.0212 (4)0.6829 (2)0.16548 (11)0.0679 (8)
H21A0.98070.64300.19060.081*
H21B1.12720.67560.16890.081*
C220.9657 (4)0.6407 (3)0.11834 (13)0.0758 (9)
H22A0.99850.68400.09310.091*
H22B1.00570.57240.11440.091*
N220.8036 (3)0.63543 (19)0.11434 (9)0.0648 (7)
H22C0.774 (4)0.596 (2)0.1381 (9)0.078*
H22D0.756 (3)0.6949 (15)0.1190 (12)0.078*
C230.7439 (4)0.5962 (3)0.06626 (11)0.0769 (10)
H23A0.73830.65290.04370.092*
H23B0.81140.54570.05490.092*
C240.5961 (5)0.5488 (3)0.06750 (11)0.0737 (9)
C250.4793 (6)0.6015 (4)0.04688 (14)0.0959 (12)
H25A0.49360.66680.03450.115*
C260.3370 (7)0.5587 (6)0.04397 (18)0.1311 (19)
H26A0.25710.59500.03010.157*
C270.3195 (8)0.4606 (7)0.0625 (2)0.138 (3)
H27A0.22700.43030.06080.166*
C280.4359 (10)0.4094 (5)0.0827 (2)0.140 (3)
H28A0.42290.34360.09460.168*
C290.5702 (6)0.4512 (3)0.08602 (12)0.0939 (13)
N230.6930 (7)0.3884 (2)0.10924 (12)0.1083 (15)
O50.6572 (7)0.3081 (3)0.12602 (13)0.205 (3)
O60.8142 (6)0.4235 (3)0.11446 (16)0.1383 (14)
Cl10.61515 (8)0.83642 (6)0.12955 (2)0.0618 (2)
Cl20.66871 (10)0.53719 (6)0.20643 (3)0.0696 (2)
Cl30.91772 (12)0.82403 (9)0.01891 (4)0.0971 (3)
O71.0384 (7)0.6272 (5)−0.0268 (2)0.166 (3)0.793 (11)
H711.046 (14)0.658 (7)−0.0533 (19)0.249*0.793 (11)
H721.006 (12)0.673 (5)−0.009 (3)0.249*0.793 (11)
O80.3919 (5)0.6773 (5)0.1646 (2)0.121 (3)0.621 (9)
H810.426 (9)0.723 (5)0.147 (3)0.182*0.621 (9)
H820.461 (7)0.633 (6)0.168 (4)0.182*0.621 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0575 (14)0.0559 (14)0.0721 (15)0.0051 (12)−0.0083 (12)−0.0021 (12)
C10.0607 (19)0.0697 (19)0.077 (2)0.0053 (16)−0.0152 (16)−0.0118 (16)
C20.070 (2)0.071 (2)0.0636 (18)0.0112 (17)−0.0087 (15)−0.0050 (15)
N20.0642 (15)0.0621 (14)0.0480 (12)0.0035 (12)−0.0052 (11)−0.0073 (11)
C30.076 (2)0.0637 (18)0.0605 (17)0.0026 (16)0.0023 (15)0.0007 (14)
C40.0616 (18)0.0628 (17)0.0509 (15)−0.0004 (14)−0.0026 (13)−0.0095 (13)
C50.072 (2)0.0675 (19)0.0659 (18)0.0044 (17)0.0064 (15)0.0024 (15)
C60.073 (2)0.0644 (19)0.081 (2)0.0048 (17)−0.0035 (18)0.0015 (16)
C70.0618 (19)0.073 (2)0.084 (2)0.0042 (17)−0.0072 (18)−0.0149 (18)
C80.0571 (19)0.088 (2)0.073 (2)−0.0054 (18)0.0035 (15)−0.0145 (18)
C90.0652 (19)0.0674 (18)0.0530 (16)−0.0069 (16)−0.0055 (14)−0.0046 (14)
N30.087 (2)0.096 (2)0.075 (2)0.0044 (19)0.0149 (16)0.0109 (18)
O10.163 (3)0.182 (4)0.091 (2)0.048 (3)0.042 (2)0.042 (2)
O20.139 (3)0.0850 (19)0.109 (2)0.0062 (19)0.0188 (19)0.0254 (17)
C110.060 (2)0.075 (2)0.092 (2)−0.0038 (17)−0.0063 (17)0.0100 (18)
C120.078 (2)0.072 (2)0.105 (3)−0.0145 (18)−0.030 (2)0.0173 (19)
N120.0734 (18)0.0586 (16)0.0781 (19)−0.0116 (14)−0.0118 (15)0.0082 (13)
C130.085 (2)0.066 (2)0.084 (2)−0.0186 (18)−0.0207 (18)0.0212 (17)
C140.077 (2)0.0526 (17)0.0688 (19)−0.0149 (16)−0.0133 (16)0.0096 (14)
C150.087 (2)0.076 (2)0.071 (2)−0.0080 (19)−0.0006 (18)0.0149 (17)
C160.115 (4)0.082 (3)0.077 (2)−0.007 (2)−0.020 (2)0.0171 (19)
C170.099 (3)0.070 (2)0.101 (3)−0.009 (2)−0.035 (3)0.016 (2)
C180.078 (2)0.0571 (19)0.123 (3)−0.0040 (18)0.007 (2)0.013 (2)
C190.095 (3)0.0479 (16)0.0705 (19)−0.0080 (16)0.0032 (18)0.0081 (14)
N130.143 (4)0.0622 (18)0.088 (2)−0.004 (2)0.030 (3)0.0144 (17)
O30.183 (4)0.170 (4)0.150 (3)0.037 (3)0.090 (3)0.048 (3)
O40.182 (3)0.0783 (18)0.0662 (16)−0.005 (2)−0.0007 (18)0.0081 (13)
C210.0662 (19)0.0653 (19)0.0718 (19)0.0132 (16)0.0023 (15)0.0041 (15)
C220.080 (2)0.067 (2)0.082 (2)0.0100 (17)0.0165 (18)−0.0071 (17)
N220.088 (2)0.0529 (14)0.0541 (14)0.0044 (13)0.0074 (13)−0.0057 (11)
C230.110 (3)0.066 (2)0.0553 (17)−0.0139 (19)0.0089 (17)−0.0046 (15)
C240.110 (3)0.0599 (18)0.0524 (17)−0.0175 (19)0.0113 (18)−0.0092 (14)
C250.123 (4)0.096 (3)0.068 (2)−0.014 (3)0.001 (2)−0.013 (2)
C260.125 (5)0.181 (6)0.086 (3)−0.011 (4)−0.003 (3)−0.042 (4)
C270.138 (5)0.185 (7)0.098 (4)−0.088 (5)0.044 (4)−0.053 (4)
C280.207 (7)0.133 (5)0.087 (3)−0.087 (5)0.055 (4)−0.043 (3)
C290.152 (4)0.077 (2)0.0545 (19)−0.039 (3)0.022 (2)−0.0207 (18)
N230.213 (5)0.0461 (18)0.0650 (18)−0.013 (3)0.006 (3)−0.0040 (14)
O50.416 (8)0.075 (2)0.113 (3)−0.073 (3)−0.056 (4)0.0271 (19)
O60.187 (4)0.079 (2)0.151 (3)0.034 (3)0.029 (3)0.007 (2)
Cl10.0686 (5)0.0594 (4)0.0555 (4)0.0021 (4)−0.0085 (3)0.0005 (3)
Cl20.0815 (5)0.0606 (4)0.0665 (5)0.0027 (4)0.0050 (4)0.0078 (3)
Cl30.1002 (7)0.1081 (8)0.0858 (6)−0.0133 (6)0.0264 (5)0.0007 (5)
O70.139 (5)0.212 (6)0.145 (5)0.047 (4)0.003 (4)−0.046 (4)
O80.077 (3)0.125 (5)0.163 (5)−0.006 (3)0.025 (3)0.052 (4)

Geometric parameters (Å, °)

N1—C11.459 (4)C14—C191.389 (5)
N1—C111.465 (4)C15—C161.354 (5)
N1—C211.466 (4)C15—H15A0.9300
C1—C21.497 (5)C16—C171.346 (6)
C1—H1A0.9700C16—H16A0.9300
C1—H1B0.9700C17—C181.364 (6)
C2—N21.497 (4)C17—H17A0.9300
C2—H2A0.9700C18—C191.396 (5)
C2—H2B0.9700C18—H18A0.9300
N2—C31.485 (4)C19—N131.455 (5)
N2—H2C0.897 (10)N13—O31.190 (5)
N2—H2D0.906 (10)N13—O41.216 (5)
C3—C41.504 (4)C21—C221.487 (5)
C3—H3A0.9700C21—H21A0.9700
C3—H3B0.9700C21—H21B0.9700
C4—C51.378 (4)C22—N221.478 (5)
C4—C91.393 (4)C22—H22A0.9700
C5—C61.385 (5)C22—H22B0.9700
C5—H5A0.9300N22—C231.507 (4)
C6—C71.357 (5)N22—H22C0.899 (10)
C6—H6A0.9300N22—H22D0.900 (10)
C7—C81.365 (5)C23—C241.487 (5)
C7—H7A0.9300C23—H23A0.9700
C8—C91.372 (5)C23—H23B0.9700
C8—H8A0.9300C24—C251.361 (6)
C9—N31.463 (4)C24—C291.398 (5)
N3—O21.193 (4)C25—C261.411 (7)
N3—O11.208 (4)C25—H25A0.9300
C11—C121.501 (5)C26—C271.391 (9)
C11—H11A0.9700C26—H26A0.9300
C11—H11B0.9700C27—C281.345 (9)
C12—N121.493 (4)C27—H27A0.9300
C12—H12A0.9700C28—C291.338 (8)
C12—H12B0.9700C28—H28A0.9300
N12—C131.495 (4)C29—N231.498 (7)
N12—H12C0.897 (10)N23—O61.196 (6)
N12—H12D0.902 (10)N23—O51.202 (5)
C13—C141.503 (5)O7—H710.851 (10)
C13—H13A0.9700O7—H720.851 (10)
C13—H13B0.9700O8—H810.850 (10)
C14—C151.378 (5)O8—H820.850 (10)
C1—N1—C11110.8 (3)C14—C13—H13B108.9
C1—N1—C21109.2 (2)H13A—C13—H13B107.8
C11—N1—C21109.3 (3)C15—C14—C19116.6 (3)
N1—C1—C2114.4 (3)C15—C14—C13116.4 (3)
N1—C1—H1A108.7C19—C14—C13126.8 (3)
C2—C1—H1A108.7C16—C15—C14122.3 (4)
N1—C1—H1B108.7C16—C15—H15A118.8
C2—C1—H1B108.7C14—C15—H15A118.8
H1A—C1—H1B107.6C17—C16—C15120.5 (4)
N2—C2—C1112.0 (3)C17—C16—H16A119.8
N2—C2—H2A109.2C15—C16—H16A119.8
C1—C2—H2A109.2C16—C17—C18120.5 (4)
N2—C2—H2B109.2C16—C17—H17A119.7
C1—C2—H2B109.2C18—C17—H17A119.7
H2A—C2—H2B107.9C17—C18—C19119.1 (4)
C3—N2—C2110.7 (2)C17—C18—H18A120.5
C3—N2—H2C114 (2)C19—C18—H18A120.5
C2—N2—H2C104 (2)C14—C19—C18121.0 (3)
C3—N2—H2D109 (2)C14—C19—N13121.3 (4)
C2—N2—H2D111 (2)C18—C19—N13117.8 (4)
H2C—N2—H2D109 (3)O3—N13—O4121.4 (4)
N2—C3—C4113.3 (3)O3—N13—C19118.8 (5)
N2—C3—H3A108.9O4—N13—C19119.8 (4)
C4—C3—H3A108.9N1—C21—C22112.6 (3)
N2—C3—H3B108.9N1—C21—H21A109.1
C4—C3—H3B108.9C22—C21—H21A109.1
H3A—C3—H3B107.7N1—C21—H21B109.1
C5—C4—C9115.3 (3)C22—C21—H21B109.1
C5—C4—C3122.5 (3)H21A—C21—H21B107.8
C9—C4—C3122.2 (3)N22—C22—C21111.1 (3)
C4—C5—C6121.7 (3)N22—C22—H22A109.4
C4—C5—H5A119.1C21—C22—H22A109.4
C6—C5—H5A119.1N22—C22—H22B109.4
C7—C6—C5120.9 (3)C21—C22—H22B109.4
C7—C6—H6A119.5H22A—C22—H22B108.0
C5—C6—H6A119.5C22—N22—C23112.2 (3)
C6—C7—C8119.4 (3)C22—N22—H22C109 (2)
C6—C7—H7A120.3C23—N22—H22C111 (2)
C8—C7—H7A120.3C22—N22—H22D116 (2)
C7—C8—C9119.3 (3)C23—N22—H22D106 (2)
C7—C8—H8A120.4H22C—N22—H22D102 (3)
C9—C8—H8A120.4C24—C23—N22112.9 (3)
C8—C9—C4123.4 (3)C24—C23—H23A109.0
C8—C9—N3117.1 (3)N22—C23—H23A109.0
C4—C9—N3119.5 (3)C24—C23—H23B109.0
O2—N3—O1122.1 (4)N22—C23—H23B109.0
O2—N3—C9119.0 (3)H23A—C23—H23B107.8
O1—N3—C9118.9 (4)C25—C24—C29117.9 (4)
N1—C11—C12114.5 (3)C25—C24—C23117.7 (3)
N1—C11—H11A108.6C29—C24—C23124.4 (4)
C12—C11—H11A108.6C24—C25—C26121.0 (5)
N1—C11—H11B108.6C24—C25—H25A119.5
C12—C11—H11B108.6C26—C25—H25A119.5
H11A—C11—H11B107.6C27—C26—C25118.1 (6)
N12—C12—C11112.6 (3)C27—C26—H26A121.0
N12—C12—H12A109.1C25—C26—H26A121.0
C11—C12—H12A109.1C28—C27—C26120.2 (6)
N12—C12—H12B109.1C28—C27—H27A119.9
C11—C12—H12B109.1C26—C27—H27A119.9
H12A—C12—H12B107.8C29—C28—C27121.3 (6)
C12—N12—C13110.5 (2)C29—C28—H28A119.4
C12—N12—H12C107 (2)C27—C28—H28A119.4
C13—N12—H12C114 (2)C28—C29—C24121.5 (6)
C12—N12—H12D104 (2)C28—C29—N23117.5 (5)
C13—N12—H12D115 (2)C24—C29—N23121.0 (4)
H12C—N12—H12D104 (3)O6—N23—O5124.0 (6)
N12—C13—C14113.2 (3)O6—N23—C29120.1 (4)
N12—C13—H13A108.9O5—N23—C29115.4 (6)
C14—C13—H13A108.9H71—O7—H72104 (3)
N12—C13—H13B108.9H81—O8—H82104 (3)
C11—N1—C1—C2163.5 (3)C16—C17—C18—C190.9 (6)
C21—N1—C1—C2−76.1 (3)C15—C14—C19—C180.7 (5)
N1—C1—C2—N2−75.8 (3)C13—C14—C19—C18175.6 (3)
C1—C2—N2—C3177.4 (2)C15—C14—C19—N13−177.8 (3)
C2—N2—C3—C4165.9 (2)C13—C14—C19—N13−2.9 (5)
N2—C3—C4—C519.9 (4)C17—C18—C19—C14−1.0 (5)
N2—C3—C4—C9−158.0 (3)C17—C18—C19—N13177.6 (3)
C9—C4—C5—C6−1.4 (4)C14—C19—N13—O3171.6 (4)
C3—C4—C5—C6−179.5 (3)C18—C19—N13—O3−6.9 (5)
C4—C5—C6—C72.0 (5)C14—C19—N13—O4−7.1 (5)
C5—C6—C7—C8−0.8 (5)C18—C19—N13—O4174.3 (3)
C6—C7—C8—C9−1.0 (5)C1—N1—C21—C22159.9 (3)
C7—C8—C9—C41.7 (5)C11—N1—C21—C22−78.8 (3)
C7—C8—C9—N3−176.1 (3)N1—C21—C22—N22−67.4 (4)
C5—C4—C9—C8−0.5 (4)C21—C22—N22—C23178.1 (3)
C3—C4—C9—C8177.6 (3)C22—N22—C23—C24155.5 (3)
C5—C4—C9—N3177.2 (3)N22—C23—C24—C25107.9 (4)
C3—C4—C9—N3−4.7 (4)N22—C23—C24—C29−75.9 (4)
C8—C9—N3—O2143.3 (4)C29—C24—C25—C26−0.5 (5)
C4—C9—N3—O2−34.6 (5)C23—C24—C25—C26176.0 (3)
C8—C9—N3—O1−38.7 (5)C24—C25—C26—C27−0.5 (6)
C4—C9—N3—O1143.5 (4)C25—C26—C27—C280.4 (8)
C1—N1—C11—C12−76.1 (3)C26—C27—C28—C290.6 (8)
C21—N1—C11—C12163.6 (3)C27—C28—C29—C24−1.7 (7)
N1—C11—C12—N12−66.1 (4)C27—C28—C29—N23179.9 (5)
C11—C12—N12—C13−165.5 (3)C25—C24—C29—C281.6 (5)
C12—N12—C13—C14−170.5 (3)C23—C24—C29—C28−174.6 (4)
N12—C13—C14—C15−104.5 (4)C25—C24—C29—N23180.0 (3)
N12—C13—C14—C1980.5 (4)C23—C24—C29—N233.8 (5)
C19—C14—C15—C16−0.4 (5)C28—C29—N23—O6−177.6 (4)
C13—C14—C15—C16−175.9 (3)C24—C29—N23—O63.9 (6)
C14—C15—C16—C170.4 (6)C28—C29—N23—O5−5.1 (5)
C15—C16—C17—C18−0.6 (6)C24—C29—N23—O5176.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2D···Cl10.91 (1)2.26 (1)3.155 (2)172 (3)
N12—H12D···Cl10.90 (1)2.40 (2)3.225 (3)153 (3)
N22—H22D···Cl10.90 (1)2.28 (1)3.176 (3)174 (3)
N12—H12C···Cl30.90 (1)2.16 (1)3.054 (3)174 (3)
N22—H22C···Cl20.90 (1)2.34 (1)3.209 (3)164 (3)
O8—H81···Cl10.85 (1)2.35 (5)3.115 (5)150 (9)
O8—H82···Cl20.85 (1)2.46 (4)3.265 (5)159 (10)
O7—H72···Cl30.85 (1)2.28 (3)3.102 (6)163 (9)
N2—H2C···Cl2i0.90 (1)2.22 (1)3.089 (3)163 (3)
O7—H71···O6ii0.85 (1)2.45 (8)2.965 (7)119 (8)

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2103).

References

  • Bryantsev, V. S. & Hay, B. P. (2005). Org. Lett 7, 5031–5034. [PubMed]
  • Coyle, J. L., Fuller, A., McKee, V. & Nelson, J. (2006). Acta Cryst. C62, m472–m476. [PubMed]
  • Hossain, Md. A., Liljegren, J. A., Powell, D. & Bowman-James, K. (2004). Inorg. Chem.43, 3751–3755. [PubMed]
  • Lakshminarayanan, P. S., Ravikumar, I., Suresh, E. & Ghosh, P. (2007). Inorg. Chem.46, 4769–4771. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • McKee, V., Morgan, G. G. & Nelson, J. (2006). Acta Cryst. E62, o3747–o3749.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). XSCANS Version 2.31. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography