PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1684.
Published online 2009 June 27. doi:  10.1107/S160053680901839X
PMCID: PMC2969333

3-(1H-Tetra­zol-5-yl)pyridinium 3-(2H-tetra­zol-5-yl)pyridinium dinitrate

Abstract

In the title compound, C6H6N5 +·NO3 , there are two different isomers of the cation within the asymmetric unit. The dihedral angles between the the pyridinium and tetra­zole rings are 2.54 (15) and 13.36 (18)° in the two cations. In the crystal, the packing of ions is stabilized by N—H(...)O and N—H(...)(O,O) hydrogen bonds, forming clusters composed of four ion pairs.

Related literature

For background to tetra­zole derivatives, see: Dai & Fu (2008 [triangle]); Wang et al. (2005 [triangle]); Wen (2008 [triangle]); Xiong et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1684-scheme1.jpg

Experimental

Crystal data

  • C6H6N5 +·NO3
  • M r = 210.17
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1684-efi1.jpg
  • a = 6.9157 (14) Å
  • b = 10.575 (2) Å
  • c = 13.346 (3) Å
  • α = 110.10 (3)°
  • β = 100.65 (3)°
  • γ = 95.87 (3)°
  • V = 886.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 298 K
  • 0.35 × 0.30 × 0.15 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.956, T max = 0.981
  • 9175 measured reflections
  • 4035 independent reflections
  • 2272 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.150
  • S = 1.03
  • 4035 reflections
  • 279 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901839X/hb2945sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901839X/hb2945Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

Tetrazole derivatives have found wide range of applications in coordination chemistry because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Wang, et al. 2005; Xiong, et al. 2002; Wen 2008). We report here the crystal structure of the title compound, 3-(1H-tetrazol-5-yl)pyridinium 3-(2H-tetrazol-5-yl)pyridinium nitrate (Fig. 1).

The title compound contains two different isomers of the cation, one with the H atom attached to the N2 and the other with the H atom attached to N9. Each isomer is built up by two different rings. The pyridinium and the tetrazole rings are nearly coplanar and only twisted from each other by a dihedral angle of 2.54 (15)° [13.36 (18)° for the second molecule]. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Wang et al. 2005; Dai & Fu, 2008).

The packing of ions is stabilized by N—H···O hydrogen bonds, to form a zero-dimentional sheets parallel to the (1 0 0) plane that is composed of four pairs of ions (Table 1, Fig. 2).

Experimental

Picolinonitrile (30 mmol), NaN 3 (45 mmol), NH4Cl (33 mmol) and DMF (50 ml) were added in a flask under nitrogen atmosphere and the mixture stirred at 383 K for 20 h. The resulting solution was then poured into ice-water (100 ml), and a white solid was obtained after adding HCl (6 M) till pH = 6. The precipitate was filtered and washed with distilled water. Colourless blocks of (I) were obtained from the crude product by slow evaporation of an ethanol/HNO3 (50:1 v/v) solution.

Refinement

The tetrazole-ring H atoms were located in a difference map and freely refined. The other H atoms were fixed geometrically (C–H = 0.93 Å and N–H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(C or N).

Figures

Fig. 1.
A view of (I) with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
The crystal packing of (I) viewed along the a axis showing the two-dimensional hydrogen bonding network. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C6H6N5+·NO3Z = 4
Mr = 210.17F(000) = 432
Triclinic, P1Dx = 1.575 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9157 (14) ÅCell parameters from 4035 reflections
b = 10.575 (2) Åθ = 3.1–27.5°
c = 13.346 (3) ŵ = 0.13 mm1
α = 110.10 (3)°T = 298 K
β = 100.65 (3)°Block, colourless
γ = 95.87 (3)°0.35 × 0.30 × 0.15 mm
V = 886.2 (3) Å3

Data collection

Rigaku Mercury2 diffractometer4035 independent reflections
Radiation source: fine-focus sealed tube2272 reflections with I > 2σ(I)
graphiteRint = 0.045
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD profile fitting scansh = −8→8
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −13→13
Tmin = 0.956, Tmax = 0.981l = −17→17
9175 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0621P)2 + 0.11P] where P = (Fo2 + 2Fc2)/3
4035 reflections(Δ/σ)max < 0.001
279 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O40.6923 (3)0.42367 (18)0.16340 (15)0.0676 (5)
N120.7836 (3)0.3552 (2)0.09506 (16)0.0538 (5)
O50.8211 (3)0.24401 (18)0.09476 (15)0.0736 (5)
N50.6669 (3)0.30395 (19)0.31822 (16)0.0562 (5)
H5A0.66910.35100.27700.067*
O60.8282 (3)0.40305 (19)0.02794 (15)0.0719 (5)
N60.3306 (3)1.0327 (2)0.16715 (18)0.0631 (6)
C30.6604 (3)0.1553 (2)0.44515 (18)0.0521 (6)
H30.65770.10280.48850.063*
N10.2697 (3)0.3533 (2)0.53331 (16)0.0581 (5)
C50.5298 (3)0.3174 (2)0.37811 (18)0.0499 (6)
H50.43870.37550.37450.060*
C120.3716 (3)0.9175 (2)0.17583 (18)0.0478 (5)
C60.3778 (3)0.2557 (2)0.51234 (17)0.0466 (5)
N90.2512 (3)0.8800 (2)0.23196 (17)0.0578 (5)
C40.5260 (3)0.2439 (2)0.44512 (17)0.0446 (5)
C100.5230 (3)0.8456 (2)0.13170 (17)0.0438 (5)
N20.1669 (3)0.3194 (3)0.59678 (17)0.0641 (6)
N40.3414 (3)0.1670 (2)0.56134 (18)0.0687 (6)
N70.1816 (3)1.0644 (2)0.2193 (2)0.0723 (6)
C110.5523 (3)0.7245 (2)0.14313 (19)0.0524 (6)
H110.47820.68920.18210.063*
C10.8009 (4)0.2213 (3)0.3189 (2)0.0607 (7)
H10.89510.21660.27680.073*
N30.2040 (4)0.2098 (3)0.61492 (19)0.0750 (7)
C20.7973 (4)0.1445 (2)0.3817 (2)0.0577 (6)
H20.88720.08490.38180.069*
C90.6383 (4)0.8947 (3)0.0739 (2)0.0609 (7)
H90.62470.97780.06640.073*
N100.6860 (3)0.6578 (2)0.09869 (18)0.0673 (6)
H10A0.70340.58280.10790.081*
N80.1327 (3)0.9736 (2)0.25866 (19)0.0722 (6)
C70.7937 (4)0.7011 (3)0.0409 (2)0.0765 (8)
H70.88350.64960.00960.092*
C80.7731 (4)0.8206 (3)0.0275 (2)0.0752 (8)
H80.84900.8522−0.01260.090*
N110.7936 (3)0.4430 (2)0.71227 (17)0.0552 (5)
O30.6532 (3)0.4772 (2)0.75145 (17)0.0817 (6)
O20.8610 (3)0.3403 (2)0.71981 (19)0.0878 (6)
O10.8712 (3)0.5025 (2)0.66120 (17)0.0809 (6)
H9A0.236 (4)0.802 (3)0.248 (2)0.069 (8)*
H2A0.075 (4)0.361 (3)0.625 (2)0.073 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O40.0790 (12)0.0713 (11)0.0790 (12)0.0375 (10)0.0464 (10)0.0393 (10)
N120.0476 (11)0.0620 (13)0.0548 (12)0.0134 (10)0.0152 (10)0.0229 (11)
O50.0974 (14)0.0641 (12)0.0720 (12)0.0379 (11)0.0306 (11)0.0287 (10)
N50.0711 (14)0.0495 (11)0.0544 (12)0.0048 (10)0.0232 (11)0.0245 (10)
O60.0786 (13)0.0856 (13)0.0746 (12)0.0245 (10)0.0400 (11)0.0441 (11)
N60.0656 (14)0.0485 (12)0.0753 (15)0.0186 (10)0.0165 (12)0.0207 (11)
C30.0610 (15)0.0476 (13)0.0510 (14)0.0125 (11)0.0136 (12)0.0212 (11)
N10.0603 (13)0.0582 (12)0.0607 (13)0.0165 (10)0.0265 (11)0.0201 (10)
C50.0607 (15)0.0390 (12)0.0513 (13)0.0091 (10)0.0178 (12)0.0158 (10)
C120.0515 (14)0.0453 (13)0.0438 (12)0.0070 (10)0.0082 (11)0.0150 (10)
C60.0520 (14)0.0427 (12)0.0435 (12)0.0067 (10)0.0136 (11)0.0134 (10)
N90.0576 (13)0.0595 (13)0.0640 (13)0.0192 (11)0.0237 (11)0.0252 (11)
C40.0514 (13)0.0368 (11)0.0438 (12)0.0064 (10)0.0124 (11)0.0126 (10)
C100.0459 (12)0.0440 (12)0.0420 (12)0.0096 (10)0.0087 (10)0.0168 (10)
N20.0613 (14)0.0750 (16)0.0570 (13)0.0155 (12)0.0265 (12)0.0182 (12)
N40.0868 (16)0.0672 (14)0.0757 (15)0.0224 (12)0.0410 (13)0.0417 (12)
N70.0666 (15)0.0580 (14)0.0874 (17)0.0235 (11)0.0184 (13)0.0173 (13)
C110.0530 (14)0.0531 (14)0.0543 (14)0.0168 (11)0.0129 (12)0.0217 (11)
C10.0588 (16)0.0592 (15)0.0626 (16)0.0078 (12)0.0244 (13)0.0165 (13)
N30.0845 (17)0.0857 (17)0.0724 (15)0.0164 (13)0.0395 (14)0.0397 (13)
C20.0575 (15)0.0568 (14)0.0624 (15)0.0190 (12)0.0210 (13)0.0206 (13)
C90.0582 (15)0.0695 (16)0.0628 (16)0.0135 (13)0.0128 (13)0.0342 (14)
N100.0663 (14)0.0599 (13)0.0762 (15)0.0272 (11)0.0133 (13)0.0234 (12)
N80.0632 (14)0.0714 (15)0.0802 (16)0.0264 (12)0.0262 (12)0.0170 (13)
C70.0626 (18)0.092 (2)0.0760 (19)0.0310 (16)0.0234 (16)0.0235 (17)
C80.0604 (17)0.111 (2)0.0685 (18)0.0207 (16)0.0271 (15)0.0427 (18)
N110.0512 (12)0.0589 (13)0.0604 (13)0.0121 (10)0.0160 (11)0.0260 (11)
O30.0753 (13)0.0926 (14)0.1060 (15)0.0389 (11)0.0537 (12)0.0489 (12)
O20.0878 (14)0.0793 (13)0.1334 (18)0.0386 (11)0.0536 (13)0.0643 (13)
O10.0872 (14)0.0878 (13)0.0980 (15)0.0216 (11)0.0476 (12)0.0565 (12)

Geometric parameters (Å, °)

O4—N121.268 (2)C10—C111.372 (3)
N12—O51.229 (2)C10—C91.385 (3)
N12—O61.239 (2)N2—N31.304 (3)
N5—C51.337 (3)N2—H2A0.88 (3)
N5—C11.338 (3)N4—N31.318 (3)
N5—H5A0.8600N7—N81.288 (3)
N6—C121.317 (3)C11—N101.324 (3)
N6—N71.354 (3)C11—H110.9300
C3—C21.370 (3)C1—C21.354 (3)
C3—C41.386 (3)C1—H10.9300
C3—H30.9300C2—H20.9300
N1—N21.315 (3)C9—C81.377 (4)
N1—C61.319 (3)C9—H90.9300
C5—C41.374 (3)N10—C71.321 (3)
C5—H50.9300N10—H10A0.8600
C12—N91.334 (3)C7—C81.354 (4)
C12—C101.450 (3)C7—H70.9300
C6—N41.343 (3)C8—H80.9300
C6—C41.469 (3)N11—O31.215 (2)
N9—N81.345 (3)N11—O11.228 (2)
N9—H9A0.93 (2)N11—O21.253 (2)
O5—N12—O6122.0 (2)N3—N2—H2A118.7 (17)
O5—N12—O4120.4 (2)N1—N2—H2A126.4 (17)
O6—N12—O4117.6 (2)N3—N4—C6105.8 (2)
C5—N5—C1123.6 (2)N8—N7—N6110.6 (2)
C5—N5—H5A118.2N10—C11—C10120.0 (2)
C1—N5—H5A118.2N10—C11—H11120.0
C12—N6—N7106.2 (2)C10—C11—H11120.0
C2—C3—C4120.4 (2)N5—C1—C2119.0 (2)
C2—C3—H3119.8N5—C1—H1120.5
C4—C3—H3119.8C2—C1—H1120.5
N2—N1—C6101.2 (2)N2—N3—N4105.6 (2)
N5—C5—C4118.8 (2)C1—C2—C3119.6 (2)
N5—C5—H5120.6C1—C2—H2120.2
C4—C5—H5120.6C3—C2—H2120.2
N6—C12—N9108.2 (2)C8—C9—C10120.1 (2)
N6—C12—C10125.2 (2)C8—C9—H9120.0
N9—C12—C10126.7 (2)C10—C9—H9120.0
N1—C6—N4112.5 (2)C7—N10—C11123.0 (2)
N1—C6—C4125.0 (2)C7—N10—H10A118.5
N4—C6—C4122.4 (2)C11—N10—H10A118.5
C12—N9—N8108.6 (2)N7—N8—N9106.5 (2)
C12—N9—H9A129.7 (16)N10—C7—C8119.8 (3)
N8—N9—H9A121.5 (16)N10—C7—H7120.1
C5—C4—C3118.6 (2)C8—C7—H7120.1
C5—C4—C6120.5 (2)C7—C8—C9119.2 (3)
C3—C4—C6120.9 (2)C7—C8—H8120.4
C11—C10—C9117.9 (2)C9—C8—H8120.4
C11—C10—C12120.9 (2)O3—N11—O1122.8 (2)
C9—C10—C12121.2 (2)O3—N11—O2120.1 (2)
N3—N2—N1114.9 (2)O1—N11—O2117.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N9—H9A···O2i0.93 (2)1.80 (3)2.700 (3)164 (2)
N2—H2A···O1ii0.88 (3)2.16 (3)2.998 (3)161 (2)
N2—H2A···O2ii0.88 (3)2.16 (3)2.890 (3)140 (2)
N5—H5A···O40.861.942.791 (3)168
N10—H10A···O40.862.062.891 (3)163
N10—H10A···O60.862.192.873 (3)137

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2945).

References

  • Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444. [PMC free article] [PubMed]
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem.44, 5278–5285. [PubMed]
  • Wen, X.-C. (2008). Acta Cryst. E64, m768. [PMC free article] [PubMed]
  • Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed.41, 3800–3803. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography