PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1594.
Published online 2009 June 17. doi:  10.1107/S1600536809021965
PMCID: PMC2969330

2,2′,5,5′-Tetra­methyl-1,1′-(hexane-1,6-di­yl)di-1H-pyrrole

Abstract

The mol­ecule of the title compound, C18H28N2, composed of two 2,5-dimethyl­pyrrole groups linked by a hexane chain, lies across a crystallographic inversion centre. The mean plane of the pyrrole ring is almost perpendicular to the mean plane of the central chain, making a dihedral angle of 89.09 (8)°. The crystal structure is stabilized by inter­molecular C—H(...)π inter­actions.

Related literature

For the use of chain spacers in conductive polymers, see: Zotti et al. (1997 [triangle]); Chane-Ching et al. (1998 [triangle]); Just et al. (1999 [triangle]). For related structures, see: Ramos Silva et al. (2002 [triangle], 2005 [triangle], 2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1594-scheme1.jpg

Experimental

Crystal data

  • C18H28N2
  • M r = 272.42
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1594-efi1.jpg
  • a = 7.7608 (3) Å
  • b = 6.4767 (3) Å
  • c = 16.7738 (7) Å
  • β = 94.309 (3)°
  • V = 840.74 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.06 mm−1
  • T = 293 K
  • 0.35 × 0.10 × 0.06 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.881, T max = 0.997
  • 12290 measured reflections
  • 3799 independent reflections
  • 2110 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.180
  • S = 1.03
  • 3799 reflections
  • 93 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021965/su2118sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021965/su2118Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia (FCT).

supplementary crystallographic information

Comment

Within our project of synthesizing new pyrrole derivatives for several technological purposes (Ramos Silva et al., 2002; Ramos Silva et al., 2005; Ramos Silva et al., 2008), we have prepared the title compound. This pyrrole derivative contains a long alkyl chain between two pyrrole rings. Such a configuration has proven useful in assembling conductive polymer layers (Zotti et al., 1997, Chane-Ching et al., 1998, Just et al., 1999).

The molecular structure of the title compound displays Ci symmetry (Fig. 1). The mean plane of the pyrrole ring is almost perpendicular to the mean plane of the central chain; the angle between their mean planes being 89.09 (8)°.

Due to the lack of donors/aceptors there are no conventional hydrogen bonds between the molecules. However, a C—H···π intermolecular interaction, involving the mean plane of the pyrrole ring (Cg1i: symmetry operation (i) -x+1, y+1/2, -z+1/2) and hydrogen H6 on atom C6 of the pyrrole ring, links the molecules and they assemble in a herringbone pattern (Fig. 2 and Table 1).

Experimental

0.250 g (2.15 mmol) of 1,4-phenylenedimethanamine and 0.5 ml (4.25 mmol) of hexane-2,5-dione were dissolved in 20 ml of tetrahydrofuran, under nitrogen atmosphere. 0.086 g (0.339 mmol) of iodine was added to the stirred solution at 40°C. The procedure was monitored by TLC. After completion of the reaction (1.5 h), 20 ml of CH2Cl2 were added to the mixture. The resulting mixture was washed successively with 5% Na2S2O3 solution (2 ml), NaHCO3 solution (2 ml) and brine (2 ml). The organic layer was then dried with anhydrous sodium sulfate and concentrated. The product was purified by flash chromatography on silica gel 60H FLUCKA/dichloromethane and recrystallized in cold dichloromethane, by slow solvent evaporation, yielding needle-shaped crystals; Yield 0.246 grams, corresponding to 0.9 mmol (%) = 21; GC MS (100 µmol/ml in CH2Cl2) m/z = 272; 1H-NMR (0.1 M in CDCl3, 499.428 MHz),σ 1.42 (m, 4H, Methylene), σ 1.62 (m, 4H, Methylene), σ 2.25 (s, 12H, Methyl), σ 3.75 (t, 4H, Methylene, J = 9.99 Hz), σ 5.81 (s, 4H, Pyrrole); 13C-NMR (0.1 M in CDCl3, 125.692 MHz).

Refinement

H-atoms were positioned geometrically and refined using a riding model: C—H = 0.93 - 0.97 Å with Uiso(H) = kUeq(parent C-atom), where k = 1.2 for pyrrole and methylene H-atoms, and 1.5 for methyl H-atoms.

Figures

Fig. 1.
ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% probabilty level.
Fig. 2.
A view down the b axis of the crystal packing of the title compound, showing the C—H···π interactions as dashed lines (see Table 1 for details).

Crystal data

C18H28N2F(000) = 300
Mr = 272.42Dx = 1.076 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.7608 (3) ÅCell parameters from 2568 reflections
b = 6.4767 (3) Åθ = 2.6–30.6°
c = 16.7738 (7) ŵ = 0.06 mm1
β = 94.309 (3)°T = 293 K
V = 840.74 (6) Å3Needle, yellow
Z = 20.35 × 0.10 × 0.06 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer3799 independent reflections
Radiation source: fine-focus sealed tube2110 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 35.4°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −12→12
Tmin = 0.881, Tmax = 0.997k = −10→10
12290 measured reflectionsl = −27→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.084P)2 + 0.0541P] where P = (Fo2 + 2Fc2)/3
3799 reflections(Δ/σ)max < 0.001
93 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.36575 (10)0.90724 (13)0.13870 (5)0.0405 (2)
C20.15288 (14)0.71268 (16)0.04807 (6)0.0461 (2)
H2A0.22780.72390.00450.055*
H2B0.07320.82830.04440.055*
C10.05154 (13)0.51178 (16)0.03991 (6)0.0438 (2)
H1A0.13150.39700.04710.053*
H1B−0.02690.50480.08220.053*
C70.32211 (13)1.07945 (16)0.18158 (6)0.0444 (2)
C30.26078 (15)0.72241 (17)0.12703 (6)0.0490 (3)
H3A0.18420.71330.17000.059*
H3B0.33630.60290.13100.059*
C40.53191 (13)0.92871 (18)0.11692 (6)0.0473 (3)
C60.46125 (16)1.20827 (17)0.18618 (7)0.0513 (3)
H60.46811.33600.21160.062*
C50.59257 (15)1.1140 (2)0.14579 (7)0.0547 (3)
H50.70171.16840.13980.066*
C80.15291 (18)1.1023 (3)0.21603 (10)0.0741 (4)
H8A0.14851.23320.24270.111*
H8B0.13860.99320.25370.111*
H8C0.06201.09520.17400.111*
C90.61868 (19)0.7690 (3)0.07002 (9)0.0770 (5)
H9A0.73390.81350.06150.116*
H9B0.55460.74960.01940.116*
H9C0.62350.64110.09900.116*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0412 (4)0.0383 (4)0.0410 (4)0.0004 (3)−0.0041 (3)−0.0022 (3)
C20.0477 (5)0.0449 (6)0.0443 (5)−0.0050 (4)−0.0057 (4)0.0003 (4)
C10.0452 (5)0.0434 (5)0.0420 (5)−0.0030 (4)−0.0018 (4)−0.0029 (4)
C70.0486 (5)0.0423 (5)0.0413 (5)0.0083 (4)−0.0031 (4)−0.0014 (4)
C30.0554 (6)0.0420 (5)0.0475 (6)−0.0075 (4)−0.0093 (4)0.0022 (4)
C40.0420 (5)0.0562 (6)0.0430 (5)0.0043 (4)−0.0008 (4)0.0002 (4)
C60.0670 (7)0.0383 (5)0.0463 (6)−0.0021 (5)−0.0113 (5)−0.0001 (4)
C50.0489 (6)0.0623 (7)0.0514 (6)−0.0127 (5)−0.0062 (4)0.0088 (5)
C80.0626 (8)0.0870 (11)0.0739 (9)0.0184 (7)0.0119 (6)−0.0092 (8)
C90.0652 (8)0.0941 (11)0.0722 (9)0.0247 (8)0.0077 (7)−0.0169 (8)

Geometric parameters (Å, °)

N1—C41.3735 (13)C3—H3B0.9700
N1—C71.3830 (13)C4—C51.3647 (17)
N1—C31.4529 (13)C4—C91.4904 (17)
C2—C31.5141 (14)C6—C51.4049 (18)
C2—C11.5212 (14)C6—H60.9300
C2—H2A0.9700C5—H50.9300
C2—H2B0.9700C8—H8A0.9600
C1—C1i1.5149 (18)C8—H8B0.9600
C1—H1A0.9700C8—H8C0.9600
C1—H1B0.9700C9—H9A0.9600
C7—C61.3622 (16)C9—H9B0.9600
C7—C81.4812 (17)C9—H9C0.9600
C3—H3A0.9700
C4—N1—C7109.16 (9)H3A—C3—H3B107.5
C4—N1—C3125.15 (9)C5—C4—N1107.48 (10)
C7—N1—C3125.29 (9)C5—C4—C9129.80 (12)
C3—C2—C1111.26 (8)N1—C4—C9122.72 (11)
C3—C2—H2A109.4C7—C6—C5107.90 (10)
C1—C2—H2A109.4C7—C6—H6126.1
C3—C2—H2B109.4C5—C6—H6126.1
C1—C2—H2B109.4C4—C5—C6108.05 (10)
H2A—C2—H2B108.0C4—C5—H5126.0
C1i—C1—C2113.63 (11)C6—C5—H5126.0
C1i—C1—H1A108.8C7—C8—H8A109.5
C2—C1—H1A108.8C7—C8—H8B109.5
C1i—C1—H1B108.8H8A—C8—H8B109.5
C2—C1—H1B108.8C7—C8—H8C109.5
H1A—C1—H1B107.7H8A—C8—H8C109.5
C6—C7—N1107.41 (10)H8B—C8—H8C109.5
C6—C7—C8129.72 (11)C4—C9—H9A109.5
N1—C7—C8122.84 (11)C4—C9—H9B109.5
N1—C3—C2114.82 (8)H9A—C9—H9B109.5
N1—C3—H3A108.6C4—C9—H9C109.5
C2—C3—H3A108.6H9A—C9—H9C109.5
N1—C3—H3B108.6H9B—C9—H9C109.5
C2—C3—H3B108.6
C3—C2—C1—C1i−176.89 (11)C3—N1—C4—C5−173.23 (9)
C4—N1—C7—C60.20 (11)C7—N1—C4—C9179.88 (11)
C3—N1—C7—C6173.26 (9)C3—N1—C4—C96.81 (16)
C4—N1—C7—C8−178.14 (11)N1—C7—C6—C5−0.16 (12)
C3—N1—C7—C8−5.08 (16)C8—C7—C6—C5178.02 (12)
C4—N1—C3—C2−89.88 (13)N1—C4—C5—C60.06 (12)
C7—N1—C3—C298.15 (12)C9—C4—C5—C6−179.98 (12)
C1—C2—C3—N1178.31 (9)C7—C6—C5—C40.06 (13)
C7—N1—C4—C5−0.16 (12)

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···Cg1ii0.932.673.4918 (13)148

Symmetry codes: (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2118).

References

  • Bruker (2003). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chane-Ching, K. I., Lacroix, J. C., Baudry, R., Jouini, M., Aeiyach, S., Lion, C. & Lacase, P. C. (1998). J. Electroanal. Chem.453, 139–149.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Just, P. E., Chane-Ching, K. I., Lacroix, J. C. & Lacase, P. C. (1999). J. Electroanal. Chem.479, 3–11.
  • Ramos Silva, M., Matos Beja, A., Paixão, J. A., Cabral, A. M. T. D. V., Barradas, F. I. F., Paliteiro, C. & Sobral, A. J. F. N. (2005). Z. Kristallogr. New Cryst. Struct.220, 273–274.
  • Ramos Silva, M., Matos Beja, A., Paixão, J. A., Sobral, A. J. F. N., Lopes, S. H. & Rocha Gonsalves, A. M. d’A. (2002). Acta Cryst. C58, o572–o574. [PubMed]
  • Ramos Silva, R., Silva, J. A., Urbano, A. M., Santos, A. C., Sobral, A. J. F. N., Matos Beja, A. & Paixão, J. A. (2008). Z. Kristallogr. New Cryst. Struct.223, 33–34.
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zotti, G., Schiavon, G., Zecchin, S., Berlin, A., Pagani, G. & Canavesi, A. (1997). Langmuir, 13, 2694–2698.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography