PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m784.
Published online 2009 June 17. doi:  10.1107/S1600536809022636
PMCID: PMC2969327

{Bis[4-(2-pyrid­yl)pyrimidin-2-yl]sulfane}dichloridocobalt(II)

Abstract

The asymmetric unit of the title compound, [CoCl2(C18H12N6S)], contains one half-mol­ecule situated on a twofold rotation axis which passes through the Co and S atoms. The metal centre is in a distorted octahedral CoCl2N4 coordination with the Cl atoms in the axial positions. In the crystal structure, inter­molecular C—H(...)Cl inter­actions help to establish the packing.

Related literature

For coordination compounds with bis­(4-pyridin­yl)sulfane, see: Jung et al. (1998 [triangle]); Ni & Vittal (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m784-scheme1.jpg

Experimental

Crystal data

  • [CoCl2(C18H12N6S)]
  • M r = 474.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m784-efi2.jpg
  • a = 14.685 (3) Å
  • b = 10.325 (2) Å
  • c = 13.376 (3) Å
  • β = 112.339 (3)°
  • V = 1875.9 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.33 mm−1
  • T = 298 K
  • 0.20 × 0.18 × 0.12 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.884, T max = 0.920 (expected range = 0.819–0.853)
  • 6015 measured reflections
  • 2302 independent reflections
  • 1526 reflections with I > 2σ(I)
  • R int = 0.141

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.077
  • S = 1.00
  • 2302 reflections
  • 128 parameters
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.68 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT-Plus (Bruker, 2007 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022636/at2809sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022636/at2809Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the finanical support of the Young Teachers’ Starting Fund of Southeast University.

supplementary crystallographic information

Comment

Organic ligand of bis(4-pyridinyl)sulfane has been employed to construct some intriguing metal–orgainc frameworks (MOFs) (Jung et al.,1998; Ni & Vittal, 2001). Herein, we report the molecular structure of a mononuclear CoII coordination complex (I) with bis(4-(pyridin-2-yl)pyrimidin-2-yl)sulfane.

In compound (I), the cobalt(II) ion is six-coordinated by four N atoms in equatorial position and two Cl atoms in apical position (Fig. 1). The Co—N bond lengths are 2.102 (2) Å and 2.130 (2) Å and the Co—Cl bond distance is 2.4363 (9) Å. In the crystal, intermolecular C—H···Cl interactions help to establish the packing.

Experimental

To a solution of CoCl2 (0.1 mmol) in MeOH (10 ml) was added a solution of bis(4-(pyridin-2-yl)pyrimidin-2-yl)sulfane (0.1 mmol) in CH2Cl2 (5 ml). The mixture was stirred for 30 min, then filtered. The mother liquid was stood at ambient temperature for two days to give the orange crystals.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms.

Figures

Fig. 1.
The molecular structure of the title compound showing the atomic numbering and 40% probability displacement ellipsoids [symmetry code: (A) -x, y, 1/2 - z.]

Crystal data

[CoCl2(C18H12N6S)]F(000) = 956
Mr = 474.24Dx = 1.679 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2302 reflections
a = 14.685 (3) Åθ = 2.3–25.5°
b = 10.325 (2) ŵ = 1.33 mm1
c = 13.376 (3) ÅT = 298 K
β = 112.339 (3)°Block, orange
V = 1875.9 (7) Å30.20 × 0.18 × 0.12 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer2302 independent reflections
Radiation source: fine-focus sealed tube1526 reflections with I > 2σ(I)
graphiteRint = 0.141
[var phi] and ω scansθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −17→19
Tmin = 0.884, Tmax = 0.920k = −6→13
6015 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.01P)2] where P = (Fo2 + 2Fc2)/3
2302 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = −0.67 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.50000.21623 (4)0.25000.03357 (15)
Cl10.52209 (5)0.21891 (6)0.07848 (5)0.04298 (19)
S10.50000.57242 (8)0.25000.0646 (4)
N30.37405 (17)0.09651 (17)0.17599 (17)0.0358 (5)
N20.38470 (16)0.35147 (16)0.19288 (16)0.0327 (5)
C40.2933 (2)0.3022 (2)0.15111 (19)0.0353 (6)
C10.3909 (2)0.4812 (2)0.2002 (2)0.0382 (7)
N10.3163 (2)0.56366 (19)0.16953 (19)0.0473 (6)
C50.2875 (2)0.1579 (2)0.14019 (19)0.0350 (6)
C30.2114 (2)0.3803 (3)0.1175 (2)0.0456 (7)
H3A0.14820.34600.08840.055*
C20.2275 (2)0.5119 (3)0.1289 (2)0.0500 (8)
H2A0.17330.56690.10700.060*
C60.1984 (2)0.0954 (2)0.0938 (2)0.0472 (7)
H6A0.13980.14190.06950.057*
C80.2854 (3)−0.1011 (3)0.1176 (2)0.0586 (9)
H8A0.2869−0.19060.11080.070*
C90.3722 (2)−0.0329 (2)0.1618 (2)0.0523 (9)
H9A0.4315−0.07770.18250.063*
C70.1980 (3)−0.0383 (3)0.0841 (2)0.0566 (9)
H7A0.1390−0.08370.05520.068*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0269 (3)0.0223 (2)0.0436 (3)0.0000.0045 (2)0.000
Cl10.0342 (4)0.0443 (4)0.0449 (4)0.0018 (3)0.0089 (3)0.0000 (3)
S10.0532 (8)0.0242 (5)0.0984 (10)0.0000.0086 (7)0.000
N30.0360 (14)0.0272 (10)0.0381 (12)−0.0012 (10)0.0072 (10)0.0015 (9)
N20.0333 (13)0.0253 (10)0.0349 (12)0.0029 (10)0.0077 (10)0.0012 (8)
C40.0382 (17)0.0384 (14)0.0244 (13)0.0011 (13)0.0064 (12)0.0006 (10)
C10.0434 (18)0.0290 (12)0.0390 (15)0.0063 (12)0.0121 (14)0.0017 (11)
N10.0512 (18)0.0374 (12)0.0472 (15)0.0170 (12)0.0117 (13)0.0037 (10)
C50.0354 (16)0.0382 (13)0.0280 (13)−0.0061 (13)0.0083 (13)0.0016 (11)
C30.0343 (17)0.0556 (17)0.0403 (16)0.0079 (15)0.0067 (14)0.0014 (13)
C20.047 (2)0.0529 (17)0.0445 (18)0.0276 (16)0.0118 (16)0.0072 (13)
C60.0395 (18)0.0564 (17)0.0403 (16)−0.0103 (15)0.0092 (14)0.0023 (13)
C80.076 (3)0.0356 (14)0.0502 (19)−0.0182 (17)0.0082 (19)−0.0005 (13)
C90.058 (2)0.0286 (13)0.0580 (19)−0.0056 (14)0.0079 (17)−0.0030 (12)
C70.059 (2)0.0570 (18)0.0466 (18)−0.0322 (17)0.0116 (17)−0.0023 (14)

Geometric parameters (Å, °)

Co1—N2i2.102 (2)C1—N11.323 (3)
Co1—N22.1017 (19)N1—C21.320 (4)
Co1—N32.130 (2)C5—C61.377 (4)
Co1—N3i2.130 (2)C3—C21.378 (3)
Co1—Cl1i2.4363 (9)C3—H3A0.9300
Co1—Cl12.4363 (9)C2—H2A0.9300
S1—C11.757 (3)C6—C71.386 (3)
S1—C1i1.757 (3)C6—H6A0.9300
N3—C51.335 (3)C8—C71.354 (5)
N3—C91.349 (3)C8—C91.377 (4)
N2—C41.343 (3)C8—H8A0.9300
N2—C11.343 (3)C9—H9A0.9300
C4—C31.374 (4)C7—H7A0.9300
C4—C51.497 (3)
N2i—Co1—N296.73 (11)N1—C1—N2126.5 (3)
N2i—Co1—N3172.65 (7)N1—C1—S1107.47 (18)
N2—Co1—N377.25 (8)N2—C1—S1126.1 (2)
N2i—Co1—N3i77.25 (8)C2—N1—C1116.0 (2)
N2—Co1—N3i172.65 (7)N3—C5—C6123.5 (2)
N3—Co1—N3i109.05 (11)N3—C5—C4115.3 (2)
N2i—Co1—Cl1i91.57 (6)C6—C5—C4121.3 (3)
N2—Co1—Cl1i87.57 (6)C4—C3—C2116.8 (3)
N3—Co1—Cl1i92.37 (6)C4—C3—H3A121.6
N3i—Co1—Cl1i88.39 (6)C2—C3—H3A121.6
N2i—Co1—Cl187.57 (6)N1—C2—C3123.1 (3)
N2—Co1—Cl191.57 (6)N1—C2—H2A118.5
N3—Co1—Cl188.39 (6)C3—C2—H2A118.5
N3i—Co1—Cl192.37 (6)C5—C6—C7118.6 (3)
Cl1i—Co1—Cl1178.70 (3)C5—C6—H6A120.7
C1—S1—C1i115.15 (17)C7—C6—H6A120.7
C5—N3—C9117.0 (2)C7—C8—C9120.3 (3)
C5—N3—Co1115.55 (15)C7—C8—H8A119.9
C9—N3—Co1127.4 (2)C9—C8—H8A119.9
C4—N2—C1115.9 (2)N3—C9—C8122.1 (3)
C4—N2—Co1116.07 (15)N3—C9—H9A118.9
C1—N2—Co1127.82 (19)C8—C9—H9A118.9
N2—C4—C3121.7 (2)C8—C7—C6118.4 (3)
N2—C4—C5115.4 (2)C8—C7—H7A120.8
C3—C4—C5122.9 (3)C6—C7—H7A120.8
N2—Co1—N3—C5−5.56 (17)C1i—S1—C1—N1177.9 (2)
N3i—Co1—N3—C5170.5 (2)C1i—S1—C1—N2−3.15 (18)
Cl1i—Co1—N3—C581.40 (18)N2—C1—N1—C20.7 (4)
Cl1—Co1—N3—C5−97.53 (18)S1—C1—N1—C2179.6 (2)
N2—Co1—N3—C9174.6 (2)C9—N3—C5—C62.2 (4)
N3i—Co1—N3—C9−9.30 (19)Co1—N3—C5—C6−177.6 (2)
Cl1i—Co1—N3—C9−98.4 (2)C9—N3—C5—C4−176.2 (2)
Cl1—Co1—N3—C982.7 (2)Co1—N3—C5—C43.9 (3)
N2i—Co1—N2—C4−177.8 (2)N2—C4—C5—N31.7 (3)
N3—Co1—N2—C46.51 (17)C3—C4—C5—N3179.4 (2)
Cl1i—Co1—N2—C4−86.47 (17)N2—C4—C5—C6−176.9 (2)
Cl1—Co1—N2—C494.50 (17)C3—C4—C5—C60.9 (4)
N2i—Co1—N2—C1−3.04 (17)N2—C4—C3—C2−0.2 (4)
N3—Co1—N2—C1−178.8 (2)C5—C4—C3—C2−177.8 (2)
Cl1i—Co1—N2—C188.2 (2)C1—N1—C2—C3−0.5 (4)
Cl1—Co1—N2—C1−90.8 (2)C4—C3—C2—N10.2 (4)
C1—N2—C4—C30.3 (4)N3—C5—C6—C70.4 (4)
Co1—N2—C4—C3175.7 (2)C4—C5—C6—C7178.8 (2)
C1—N2—C4—C5178.1 (2)C5—N3—C9—C8−3.3 (4)
Co1—N2—C4—C5−6.5 (3)Co1—N3—C9—C8176.5 (2)
C4—N2—C1—N1−0.6 (4)C7—C8—C9—N31.7 (5)
Co1—N2—C1—N1−175.4 (2)C9—C8—C7—C61.0 (5)
C4—N2—C1—S1−179.38 (19)C5—C6—C7—C8−2.0 (4)
Co1—N2—C1—S15.9 (3)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2A···Cl1ii0.932.633.546 (3)170
C3—H3A···Cl1iii0.932.733.584 (3)154
C7—H7A···Cl1iv0.932.763.580 (4)148

Symmetry codes: (ii) x−1/2, y+1/2, z; (iii) −x+1/2, −y+1/2, −z; (iv) x−1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2809).

References

  • Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Jung, O. S., Park, S. H., Kim, D. C. & Kim, K. M. (1998). Inorg. Chem 37, 610-611.
  • Ni, Z. & Vittal, J. J. (2001). Cryst. Growth Des.1, 195-197.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography