PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1474.
Published online 2009 June 6. doi:  10.1107/S1600536809020418
PMCID: PMC2969315

(E)-N′-(4-Bromo­benzyl­idene)-2-(8-quin­ol­yloxy)acetohydrazide mono­hydrate

Abstract

In the title compound, C18H14BrN3O2·H2O, the dihedral angle between the mean planes of the benzene ring and the quinoline ring system is 34.2 (3)°. In the crystal, the constituents are linked into chains by O—H(...)O, N—H(...)O and O—H(...)N hydrogen bonds.

Related literature

For a related structure, see: Tan (2009 [triangle]). For background to the coordination chemistry of 8-hydroxy­quinoline and its derivatives, see: Chen & Shi (1998 [triangle]); Mona & Wageih (2002 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1474-scheme1.jpg

Experimental

Crystal data

  • C18H14BrN3O2·H2O
  • M r = 402.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1474-efi1.jpg
  • a = 21.95 (2) Å
  • b = 11.841 (8) Å
  • c = 13.057 (9) Å
  • β = 93.70 (2)°
  • V = 3387 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 2.45 mm−1
  • T = 295 K
  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Siemens, 1996 [triangle]) T min = 0.640, T max = 0.710
  • 8378 measured reflections
  • 2988 independent reflections
  • 1334 reflections with I > 2σ(I)
  • R int = 0.141

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070
  • wR(F 2) = 0.178
  • S = 1.04
  • 2988 reflections
  • 227 parameters
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.75 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020418/hb2981sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020418/hb2981Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Natural Science Foundation of Zhejiang Province for Distinguished Young Students (No. 2008R40G2190024) and the Scientific Research Fund of the Zhejiang Provincial Education Department (No. Y200803569).

supplementary crystallographic information

Comment

8-Hydroxyquinoline and its derivatives constitute well known ligands in coordination chemistry (Chen & Shi, 1998; Mona & Wageih, 2002). In our search for new extractants of metal ions and biologically active materials, the title compound, (I), has been synthesized. We report here its crystal structure.

All bond lengths and angles are normal (Allen et al., 1987), and are comparable to those in the related compound (E)-N'-[1-(4-Hydroxyphenyl)ethylidene]-2-(quinolin-8- yloxy)acetohydrazide methanol solvate (Tan, 2009). The mean planes of the benzene ring and the quinoline rings make a dihedral angle of 34.2 (3)°. In the crystal structure, the C18H14BrN3O2 molecules and the water molecules are linked into chains by O—H···O, N—H···O and O—H···N hydrogen bonds.

Experimental

2-(quinolin-8-yloxy)acetohydrazide (2.18 g, 10 mmol), 4-bromobenzaldehyde (1.85 g, 10 mmol), ethanol (40 ml) and some drops of acetic acid were added to a 100 ml flask, and refluxed for 5 h. After cooling to room temperature, the mixture was filtered. Colourless blocks of (I) were obtained by slow evaporation of a acetone-methanol (1:2, v/v) solution over a period of 3 d.

Refinement

The H atoms were initially located in a difference Fourier map, then relocated in idealised positions (C—H = 0.93–0.97Å O—H = 0.85 Å and N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. The dashed lines indicate hydrogen bonds.
Fig. 2.
The structure of the chains formed via hydrogen bonds, H atoms have been omitted for clarity. The dashed lines indicate hydrogen bonds.

Crystal data

C18H14BrN3O2·H2OF(000) = 1632
Mr = 402.25Dx = 1.578 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1037 reflections
a = 21.95 (2) Åθ = 2.5–19.7°
b = 11.841 (8) ŵ = 2.45 mm1
c = 13.057 (9) ÅT = 295 K
β = 93.70 (2)°Block, colourless
V = 3387 (4) Å30.20 × 0.18 × 0.15 mm
Z = 8

Data collection

Siemens SMART CCD area-detector diffractometer2988 independent reflections
Radiation source: fine-focus sealed tube1334 reflections with I > 2σ(I)
graphiteRint = 0.141
ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Siemens, 1996)h = −15→26
Tmin = 0.640, Tmax = 0.710k = −14→13
8378 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.178w = 1/[σ2(Fo2) + (0.0524P)2 + 0.013P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2988 reflectionsΔρmax = 0.52 e Å3
227 parametersΔρmin = −0.75 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0009 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.90959 (4)−0.09454 (8)−0.24581 (7)0.0744 (4)
O10.6370 (2)0.0076 (4)0.4059 (4)0.0572 (15)
O20.7206 (2)−0.2340 (5)0.3387 (4)0.0720 (18)
O30.6745 (2)0.1677 (4)0.2304 (4)0.0709 (17)
H190.65010.17980.27730.106*
H200.70410.21330.24160.106*
N10.5826 (3)0.2041 (6)0.3665 (5)0.0569 (18)
N20.7139 (2)−0.0597 (5)0.2679 (5)0.0512 (17)
H20.70150.00890.27240.061*
N30.7481 (2)−0.0944 (5)0.1878 (4)0.0498 (16)
C10.5556 (4)0.3013 (8)0.3491 (7)0.071 (2)
H10.56380.33950.28930.085*
C20.5152 (4)0.3521 (7)0.4142 (7)0.071 (3)
H2A0.49770.42190.39800.085*
C30.5024 (3)0.2977 (8)0.5002 (7)0.069 (3)
H30.47490.32920.54320.083*
C40.5300 (3)0.1940 (6)0.5264 (6)0.0469 (19)
C50.5217 (4)0.1349 (7)0.6158 (6)0.060 (2)
H50.49510.16310.66210.072*
C60.5512 (4)0.0379 (8)0.6369 (7)0.067 (2)
H60.54480.00050.69790.081*
C70.5913 (3)−0.0086 (7)0.5699 (6)0.060 (2)
H70.6115−0.07600.58600.072*
C80.6007 (3)0.0465 (6)0.4799 (6)0.0462 (19)
C90.5708 (3)0.1502 (6)0.4560 (6)0.0459 (19)
C100.6614 (3)−0.1020 (6)0.4229 (6)0.054 (2)
H10A0.6283−0.15560.42710.065*
H10B0.6855−0.10320.48790.065*
C110.7011 (3)−0.1375 (7)0.3383 (6)0.053 (2)
C120.7666 (3)−0.0121 (7)0.1327 (6)0.050 (2)
H120.75850.06210.15090.060*
C130.8002 (3)−0.0349 (7)0.0416 (5)0.0441 (19)
C140.8235 (3)0.0555 (6)−0.0099 (6)0.051 (2)
H140.81780.12850.01390.061*
C150.8551 (3)0.0384 (7)−0.0965 (6)0.058 (2)
H150.87140.0993−0.13040.069*
C160.8623 (3)−0.0703 (7)−0.1320 (6)0.050 (2)
C170.8391 (3)−0.1611 (7)−0.0827 (6)0.050 (2)
H170.8437−0.2340−0.10730.060*
C180.8085 (3)−0.1412 (6)0.0047 (5)0.0459 (19)
H180.7932−0.20230.03970.055*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0833 (7)0.0776 (7)0.0666 (6)0.0062 (5)0.0376 (5)0.0007 (6)
O10.075 (4)0.046 (3)0.055 (3)0.009 (3)0.036 (3)0.003 (3)
O20.096 (4)0.037 (3)0.089 (5)0.008 (3)0.056 (4)0.004 (3)
O30.078 (4)0.055 (4)0.086 (4)−0.008 (3)0.050 (3)−0.008 (3)
N10.060 (4)0.048 (4)0.066 (5)0.004 (3)0.025 (4)−0.004 (4)
N20.053 (4)0.041 (4)0.063 (4)0.001 (3)0.033 (3)−0.002 (3)
N30.053 (4)0.045 (4)0.055 (4)−0.001 (3)0.031 (3)−0.007 (4)
C10.081 (6)0.069 (7)0.066 (6)0.005 (5)0.027 (5)0.015 (5)
C20.076 (6)0.059 (6)0.080 (7)0.027 (5)0.023 (5)0.004 (5)
C30.056 (6)0.077 (7)0.077 (7)0.004 (5)0.027 (5)−0.014 (6)
C40.047 (5)0.046 (5)0.050 (5)−0.001 (4)0.024 (4)−0.002 (4)
C50.069 (6)0.064 (6)0.051 (5)−0.005 (5)0.028 (4)−0.011 (5)
C60.069 (6)0.071 (7)0.066 (6)−0.004 (5)0.037 (5)0.007 (5)
C70.063 (5)0.053 (5)0.068 (6)0.003 (4)0.036 (5)0.005 (5)
C80.053 (5)0.044 (5)0.045 (5)−0.003 (4)0.024 (4)−0.004 (4)
C90.045 (5)0.046 (5)0.049 (5)−0.003 (4)0.016 (4)−0.004 (4)
C100.064 (5)0.044 (5)0.058 (5)−0.001 (4)0.033 (4)0.003 (4)
C110.053 (5)0.046 (5)0.062 (5)−0.012 (4)0.021 (4)−0.008 (5)
C120.049 (5)0.044 (5)0.061 (5)0.001 (4)0.025 (4)−0.004 (4)
C130.038 (4)0.050 (5)0.047 (5)0.000 (4)0.019 (4)0.003 (4)
C140.052 (5)0.040 (5)0.063 (5)0.002 (4)0.023 (4)−0.006 (4)
C150.055 (5)0.049 (5)0.072 (6)0.000 (4)0.027 (4)0.015 (5)
C160.044 (4)0.052 (6)0.058 (5)0.008 (4)0.016 (4)0.007 (4)
C170.054 (5)0.049 (5)0.047 (5)0.003 (4)0.013 (4)−0.009 (4)
C180.053 (5)0.041 (5)0.045 (5)−0.005 (4)0.019 (4)0.001 (4)

Geometric parameters (Å, °)

Br1—C161.889 (7)C5—H50.9300
O1—C81.371 (7)C6—C71.394 (9)
O1—C101.417 (8)C6—H60.9300
O2—C111.220 (8)C7—C81.371 (10)
O3—H190.8500C7—H70.9300
O3—H200.8500C8—C91.417 (10)
N1—C11.309 (9)C10—C111.509 (9)
N1—C91.370 (9)C10—H10A0.9700
N2—C111.344 (9)C10—H10B0.9700
N2—N31.389 (7)C12—C131.464 (9)
N2—H20.8600C12—H120.9300
N3—C121.292 (8)C13—C181.364 (9)
C1—C21.402 (11)C13—C141.381 (9)
C1—H10.9300C14—C151.379 (9)
C2—C31.341 (11)C14—H140.9300
C2—H2A0.9300C15—C161.380 (10)
C3—C41.402 (10)C15—H150.9300
C3—H30.9300C16—C171.368 (10)
C4—C51.383 (10)C17—C181.380 (9)
C4—C91.422 (9)C17—H170.9300
C5—C61.338 (10)C18—H180.9300
C8—O1—C10115.4 (5)N1—C9—C4122.9 (7)
H19—O3—H20106.1C8—C9—C4118.3 (7)
C1—N1—C9116.7 (7)O1—C10—C11111.8 (6)
C11—N2—N3117.4 (6)O1—C10—H10A109.3
C11—N2—H2121.3C11—C10—H10A109.3
N3—N2—H2121.3O1—C10—H10B109.3
C12—N3—N2113.6 (6)C11—C10—H10B109.3
N1—C1—C2124.7 (8)H10A—C10—H10B107.9
N1—C1—H1117.7O2—C11—N2123.8 (7)
C2—C1—H1117.7O2—C11—C10118.4 (7)
C3—C2—C1118.5 (8)N2—C11—C10117.8 (7)
C3—C2—H2A120.8N3—C12—C13120.4 (7)
C1—C2—H2A120.8N3—C12—H12119.8
C2—C3—C4121.0 (8)C13—C12—H12119.8
C2—C3—H3119.5C18—C13—C14118.7 (6)
C4—C3—H3119.5C18—C13—C12122.9 (7)
C5—C4—C3124.8 (7)C14—C13—C12118.3 (7)
C5—C4—C9119.0 (7)C15—C14—C13120.5 (7)
C3—C4—C9116.2 (7)C15—C14—H14119.7
C6—C5—C4121.3 (7)C13—C14—H14119.7
C6—C5—H5119.3C14—C15—C16119.1 (7)
C4—C5—H5119.3C14—C15—H15120.4
C5—C6—C7121.7 (8)C16—C15—H15120.4
C5—C6—H6119.1C17—C16—C15121.4 (7)
C7—C6—H6119.1C17—C16—Br1119.4 (6)
C8—C7—C6119.1 (7)C15—C16—Br1119.1 (6)
C8—C7—H7120.5C16—C17—C18118.1 (7)
C6—C7—H7120.5C16—C17—H17121.0
C7—C8—O1124.8 (7)C18—C17—H17121.0
C7—C8—C9120.6 (7)C13—C18—C17122.2 (7)
O1—C8—C9114.7 (6)C13—C18—H18118.9
N1—C9—C8118.7 (6)C17—C18—H18118.9
C11—N2—N3—C12−169.8 (7)C3—C4—C9—N1−0.8 (11)
C9—N1—C1—C2−1.2 (13)C5—C4—C9—C80.8 (11)
N1—C1—C2—C3−0.6 (14)C3—C4—C9—C8178.9 (7)
C1—C2—C3—C41.8 (14)C8—O1—C10—C11−179.5 (6)
C2—C3—C4—C5176.9 (8)N3—N2—C11—O24.4 (12)
C2—C3—C4—C9−1.1 (12)N3—N2—C11—C10−177.2 (6)
C3—C4—C5—C6−177.9 (8)O1—C10—C11—O2−173.5 (7)
C9—C4—C5—C60.1 (12)O1—C10—C11—N27.9 (10)
C4—C5—C6—C7−0.4 (13)N2—N3—C12—C13−176.4 (6)
C5—C6—C7—C8−0.1 (13)N3—C12—C13—C186.5 (11)
C6—C7—C8—O1−177.3 (7)N3—C12—C13—C14−174.6 (7)
C6—C7—C8—C91.0 (12)C18—C13—C14—C15−0.6 (11)
C10—O1—C8—C75.5 (11)C12—C13—C14—C15−179.6 (7)
C10—O1—C8—C9−172.9 (6)C13—C14—C15—C161.1 (12)
C1—N1—C9—C8−177.8 (7)C14—C15—C16—C17−0.5 (11)
C1—N1—C9—C41.9 (11)C14—C15—C16—Br1−176.4 (6)
C7—C8—C9—N1178.3 (7)C15—C16—C17—C18−0.6 (11)
O1—C8—C9—N1−3.2 (10)Br1—C16—C17—C18175.3 (5)
C7—C8—C9—C4−1.4 (11)C14—C13—C18—C17−0.6 (11)
O1—C8—C9—C4177.1 (7)C12—C13—C18—C17178.4 (7)
C5—C4—C9—N1−178.9 (7)C16—C17—C18—C131.1 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O30.862.042.860 (8)160
O3—H19···N10.851.972.806 (8)170
O3—H20···O2i0.852.112.783 (7)136

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2981).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Chen, C. H. & Shi, J. M. (1998). Coord. Chem. Rev.171, 161—174.
  • Mona, M. M. & Wageih, G. H. (2002). J. Coord. Chem.55, 439–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART, SAINT and SADABS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Tan, J. (2009). Acta Cryst. E65, o651. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography