PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1538.
Published online 2009 June 10. doi:  10.1107/S1600536809021199
PMCID: PMC2969314

2-(1H-Benzotriazol-1-yl)acetohydrazide

Abstract

The title compound, C8H9N5O, was synthesized by the reaction of ethyl 2-(benzotriazol-1-yl)acetate with hydrazine hydrate in ethanol. In the amide group, the C—N bond is relatively short [1.3283 (16) Å], suggesting some degree of electronic delocalization in the mol­ecule. In the crystal structure, mol­ecules are linked into infinite chains along the a axis by inter­molecular O—H(...)N hydrogen bonding.

Related literature

For general background to multiple-hydrogen-bonding N-heterocyclic systems as potential supra­molecular reagents, see: Portalone (2007 [triangle]); Portalone & Colapietro (2007 [triangle], 2008 [triangle]); For related structures, see: Shi et al. (2007a [triangle],b [triangle]); Ji et al. (2008 [triangle]); For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1538-scheme1.jpg

Experimental

Crystal data

  • C8H9N5O
  • M r = 191.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1538-efi1.jpg
  • a = 5.1434 (9) Å
  • b = 6.5885 (12) Å
  • c = 25.754 (5) Å
  • β = 94.227 (3)°
  • V = 870.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 295 K
  • 0.12 × 0.10 × 0.06 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.988, T max = 0.994
  • 4367 measured reflections
  • 1528 independent reflections
  • 1364 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.079
  • S = 1.04
  • 1528 reflections
  • 135 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021199/bg2267sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021199/bg2267Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Postgraduate Foundation of Taishan University (grant No. Y04–2–08).

supplementary crystallographic information

Comment

In our previous papers(Shi et al., 2007a; Shi et al., 2007b; Ji et al., 2008;), we have reported a number of Schiff-bases by the reaction of benzotriazol-1-yl-acetic acid hydrazide with relevant aldehyde or ketone. As a part of a more general study of multiple-hydrogen-bonding N-heterocyclic systems as potential supramolecular reagents (Portalone, 2007; Portalone & Colapietro, 2007, 2008), the title compound, (I), was synthesized and its crystal structure determined. The asymmetric unit of the (I) comprises one independent molecule. In (I) (Fig. 1), the bond lengths and angles are in good agreement with the expected values (Allen et al., 1987). In the crystal structure (Fig. 2), the molecules are linked into infinite chains by O—H···N hydrogen bond.

Experimental

The title compound was synthesized by the reaction of benzotriazol-1-yl-acetic acid ethyl ester(1 mmol) with hydrazine hydrate 85% (1.1 mmol)in ethanol (20 ml) under reflux conditions (348 K) for 24 h. The solvent was removed and the solid product recrystallized from tetrahydrofuran. After four days colorless crystals suitable for X-ray diffraction study were obtained.

Refinement

All H atoms were placed in idealized positions (C—H = 0.93— 0.97 Å, N—H = 0.86 Å) and refined as riding atoms. For those bound to C, Uiso(H) = 1.2 or 1.5Ueq(C). while for those bound to N, Uiso(H) = 1.2 Ueq(N).

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
The structure of the infinite chains formed via hydrogen bonds, H atoms have been omitted for clarity. The dashed lines indicate hydrogen bonds.

Crystal data

C8H9N5OF(000) = 400
Mr = 191.20Dx = 1.459 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2593 reflections
a = 5.1434 (9) Åθ = 2.4–28.0°
b = 6.5885 (12) ŵ = 0.11 mm1
c = 25.754 (5) ÅT = 295 K
β = 94.227 (3)°Block, colorless
V = 870.4 (3) Å30.12 × 0.10 × 0.06 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer1528 independent reflections
Radiation source: fine-focus sealed tube1364 reflections with I > 2σ(I)
graphiteRint = 0.015
[var phi] and ω scansθmax = 25.1°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −4→6
Tmin = 0.988, Tmax = 0.994k = −7→7
4367 measured reflectionsl = −28→30

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0333P)2 + 0.233P] where P = (Fo2 + 2Fc2)/3
1528 reflections(Δ/σ)max < 0.001
135 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.08675 (16)0.24854 (14)0.01128 (4)0.0432 (3)
N11.3431 (2)0.14371 (19)0.16751 (5)0.0505 (3)
N21.2038 (2)0.05513 (19)0.12958 (5)0.0496 (3)
N30.9953 (2)0.17411 (18)0.11547 (4)0.0422 (3)
N40.65313 (19)0.25384 (17)−0.00905 (4)0.0419 (3)
H10.50240.22400.00120.050*
N50.6667 (2)0.3428 (2)−0.05866 (5)0.0503 (3)
C11.2246 (2)0.3253 (2)0.17817 (5)0.0406 (3)
C21.2914 (3)0.4759 (2)0.21540 (5)0.0496 (4)
H21.43850.46370.23840.060*
C31.1312 (3)0.6408 (2)0.21632 (6)0.0537 (4)
H31.16980.74240.24070.064*
C40.9094 (3)0.6612 (2)0.18138 (6)0.0534 (4)
H40.80670.77680.18320.064*
C50.8397 (3)0.5166 (2)0.14492 (5)0.0466 (3)
H50.69330.53060.12180.056*
C61.0018 (2)0.3468 (2)0.14460 (5)0.0377 (3)
C70.8079 (3)0.1139 (2)0.07360 (5)0.0460 (3)
H7A0.63410.15070.08250.055*
H7B0.8133−0.03230.06950.055*
C80.8630 (2)0.21429 (19)0.02251 (5)0.0356 (3)
H90.723 (3)0.250 (2)−0.0799 (6)0.073 (6)*
H80.785 (3)0.441 (2)−0.0551 (8)0.078 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0277 (5)0.0555 (6)0.0466 (5)−0.0038 (4)0.0045 (4)−0.0023 (4)
N10.0450 (7)0.0599 (8)0.0460 (7)0.0030 (6)−0.0010 (5)0.0029 (6)
N20.0472 (7)0.0518 (7)0.0500 (7)0.0030 (6)0.0051 (5)0.0005 (6)
N30.0399 (6)0.0508 (7)0.0358 (6)−0.0038 (5)0.0024 (5)−0.0031 (5)
N40.0272 (5)0.0526 (7)0.0457 (6)−0.0030 (5)0.0021 (4)−0.0043 (5)
N50.0434 (7)0.0582 (8)0.0483 (7)0.0013 (6)−0.0040 (6)0.0003 (6)
C10.0351 (7)0.0530 (8)0.0342 (7)−0.0047 (6)0.0054 (5)0.0039 (6)
C20.0394 (7)0.0720 (10)0.0372 (7)−0.0136 (7)0.0009 (6)−0.0029 (7)
C30.0515 (9)0.0611 (10)0.0497 (9)−0.0159 (7)0.0114 (7)−0.0143 (7)
C40.0499 (9)0.0521 (9)0.0598 (9)−0.0013 (7)0.0145 (7)−0.0043 (7)
C50.0382 (7)0.0574 (9)0.0441 (8)−0.0003 (6)0.0025 (6)0.0020 (7)
C60.0346 (7)0.0484 (8)0.0303 (6)−0.0061 (6)0.0053 (5)0.0010 (6)
C70.0387 (7)0.0582 (9)0.0412 (7)−0.0125 (6)0.0044 (6)−0.0072 (6)
C80.0292 (6)0.0384 (7)0.0392 (7)−0.0035 (5)0.0027 (5)−0.0110 (5)

Geometric parameters (Å, °)

O1—C81.2280 (14)C1—C21.405 (2)
N1—N21.3057 (16)C2—C31.365 (2)
N1—C11.3795 (19)C2—H20.9300
N2—N31.3559 (16)C3—C41.407 (2)
N3—C61.3620 (17)C3—H30.9300
N3—C71.4478 (16)C4—C51.367 (2)
N4—C81.3283 (16)C4—H40.9300
N4—N51.4120 (17)C5—C61.3957 (19)
N4—H10.8600C5—H50.9300
N5—H90.884 (9)C7—C81.5179 (18)
N5—H80.888 (9)C7—H7A0.9700
C1—C61.3909 (18)C7—H7B0.9700
N2—N1—C1108.09 (11)C4—C3—H3119.1
N1—N2—N3108.75 (11)C5—C4—C3122.15 (14)
N2—N3—C6110.41 (10)C5—C4—H4118.9
N2—N3—C7120.74 (12)C3—C4—H4118.9
C6—N3—C7128.83 (12)C4—C5—C6115.87 (13)
C8—N4—N5122.88 (10)C4—C5—H5122.1
C8—N4—H1118.6C6—C5—H5122.1
N5—N4—H1118.6N3—C6—C1104.05 (11)
N4—N5—H9108.2 (12)N3—C6—C5133.05 (12)
N4—N5—H8106.8 (13)C1—C6—C5122.90 (12)
H9—N5—H8108.4 (17)N3—C7—C8111.69 (10)
N1—C1—C6108.69 (12)N3—C7—H7A109.3
N1—C1—C2131.22 (13)C8—C7—H7A109.3
C6—C1—C2120.08 (13)N3—C7—H7B109.3
C3—C2—C1117.16 (13)C8—C7—H7B109.3
C3—C2—H2121.4H7A—C7—H7B107.9
C1—C2—H2121.4O1—C8—N4123.60 (12)
C2—C3—C4121.83 (14)O1—C8—C7121.49 (11)
C2—C3—H3119.1N4—C8—C7114.87 (10)
C1—N1—N2—N3−0.50 (14)C7—N3—C6—C50.5 (2)
N1—N2—N3—C60.98 (15)N1—C1—C6—N30.71 (13)
N1—N2—N3—C7179.30 (11)C2—C1—C6—N3−178.58 (12)
N2—N1—C1—C6−0.15 (14)N1—C1—C6—C5−179.03 (12)
N2—N1—C1—C2179.04 (14)C2—C1—C6—C51.68 (19)
N1—C1—C2—C3−179.77 (14)C4—C5—C6—N3178.92 (13)
C6—C1—C2—C3−0.66 (19)C4—C5—C6—C1−1.43 (19)
C1—C2—C3—C4−0.5 (2)N2—N3—C7—C8−97.25 (14)
C2—C3—C4—C50.7 (2)C6—N3—C7—C880.72 (16)
C3—C4—C5—C60.2 (2)N5—N4—C8—O1−1.0 (2)
N2—N3—C6—C1−1.02 (13)N5—N4—C8—C7−178.60 (12)
C7—N3—C6—C1−179.17 (12)N3—C7—C8—O134.61 (18)
N2—N3—C6—C5178.67 (14)N3—C7—C8—N4−147.76 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H1···O1i0.862.182.9977 (14)159

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2267).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ji, N.-N. & Shi, Z.-Q. (2008). Acta Cryst. E64, o655. [PMC free article] [PubMed]
  • Portalone, G. (2007). Acta Cryst. E63, o3232.
  • Portalone, G. & Colapietro, M. (2007). Acta Cryst. C63, o655–o658. [PubMed]
  • Portalone, G. & Colapietro, M. (2008). Acta Cryst. E64, o304. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, Z.-Q., Ji, N.-N., Zheng, Z.-B. & Li, J.-K. (2007a). Acta Cryst. E63, o4561.
  • Shi, Z.-Q., Ji, N.-N., Zheng, Z.-B. & Li, J.-K. (2007b). Acta Cryst. E63, o4642.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography