PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m747–m748.
Published online 2009 June 6. doi:  10.1107/S1600536809021060
PMCID: PMC2969307

catena-Poly[[[diaqua­bis[4-(diethyl­amino)benzoato-κO]manganese(II)]-μ-aqua] dihydrate]

Abstract

In the crystal structure of the title complex, {[Mn(C11H14NO2)2(H2O)3]·2H2O}n, the two independent MnII atoms are located on a centre of symmetry and coordinated by two 4-(diethyl­amino)benzoate (DEAB) anions and two water mol­ecules in the basal plane while another water mol­ecule bridges the Mn atoms in the apical directions, forming polymeric chains. The dihedral angles between the carboxyl­ate groups and the adjacent benzene rings are 11.33 (13) and 10.90 (9)° and the benzene rings are oriented at a dihedral angle of 67.88 (6)°. The uncoordinated water mol­ecules link the carboxyl­ate groups and coordinated water mol­ecules via O—H(...)O hydrogen bonding. Weak C—H(...)π inter­actions are also found in the crystal structure.

Related literature

For the applications of transition metal complexes with biochemical mol­ecules in biological systems, see: Antolini et al. (1982 [triangle]). Benzoic acid derivatives such as 4-amino­benzoic acid are used extensively as bifunctional organic ligands in coordination chemistry due to their various coordination modes, see: Chen & Chen (2002 [triangle]); Amiraslanov et al. (1979 [triangle]); Hauptmann et al. (2000 [triangle]). In pellagra disease, niacin deficiency leads to loss of copper from the body with high serum and urinary copper levels (Krishnamachari, 1974 [triangle]). The nicotinic acid derivative N,N-Diethyl­nicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972 [triangle]). For structure–function–coordination relationships of the aryl­carboxyl­ate ion in MnII complexes of benzoic acid derivatives, see: Shnulin et al. (1981 [triangle]); Antsyshkina et al. (1980 [triangle]); Adiwidjaja et al. (1978 [triangle]); Catterick et al. (1974 [triangle]); Bigoli et al. (1972 [triangle]). For related structures, see: Hökelek et al. (1995 [triangle], 2007 [triangle], 2008 [triangle]); Hökelek & Necefoğlu (1996 [triangle], 1997 [triangle], 1998 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m747-scheme1.jpg

Experimental

Crystal data

  • [Mn(C11H14NO2)2(H2O)3]·2H2O
  • M r = 529.48
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m747-efi1.jpg
  • a = 8.1585 (2) Å
  • b = 11.2907 (2) Å
  • c = 27.8738 (3) Å
  • β = 95.644 (2)°
  • V = 2555.15 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.57 mm−1
  • T = 100 K
  • 0.50 × 0.20 × 0.15 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.870, T max = 0.920
  • 22676 measured reflections
  • 6299 independent reflections
  • 4556 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.091
  • S = 1.02
  • 6299 reflections
  • 354 parameters
  • 15 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.66 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021060/xu2525sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021060/xu2525Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

supplementary crystallographic information

Comment

Transition metal complexes with biochemical molecules show interesting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000). Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974). The nicotinic acid derivative N,N-Diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972).

The structure-function-coordination relationships of the arylcarboxylate ion in MnII complexes of benzoic acid derivatives may also change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981; Antsyshkina et al., 1980; Adiwidjaja et al., 1978). When pyridine and its derivatives are used instead of water molecules, the structure is completely different (Catterick et al., 1974).

The structure determination of the title compound, (I), a polymeric manganese complex with four 4-diethylaminobenzoate (DEAB) ligands and five coordinated and two uncoordinated water molecules, was undertaken in order to determine the properties of the ligands and also to compare the results obtained with those reported previously.

In the polymeric title complex, (I), each Mn atom is located on a centre of symmetry, and surrounded by two DEAB and four water molecules. The DEAB ligands are monodentate and a water molecule bridges the two Mn atoms (Fig. 1). The four O atoms (O2, O2', O5, O5' and O4, O4', O7, O7' atoms) in the equatorial planes around each Mn atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the symmetry related O atoms of the bridging water molecule (O6, O6' and O6'') in the axial positions (Table 1 and Fig. 1).

The near equality of the C1—O1 [1.263 (2) Å], C1—O2 [1.279 (2) Å], C12—O3 [1.263 (2) Å] and C12—O4 [1.278 (2) Å], bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, and may be compared with the corresponding distances: 1.256 (6) and 1.245 (6) Å in [Mn(DENA)2(C7H4ClO2)2(H2O)2], (II) (Hökelek et al., 2008), 1.265 (6) and 1.275 (6) Å in [Mn(C9H10NO2)2(H2O)4]. 2(H2O), (III) (Hökelek & Necefoğlu, 2007), 1.260 (4) and 1.252 (4) Å in [Zn(DENA)2(C7H4FO2)2(H2O)2],(IV) (Hökelek et al., 2007), 1.259 (9) and 1.273 (9) Å in Cu2(DENA)2(C6H5COO)4, (V) (Hökelek et al., 1995), 1.279 (4) and 1.246 (4) Å in [Zn2(DENA)2(C7H5O3)4]. 2H2O, (VI) (Hökelek & Necefoğlu, 1996), 1.251 (6) and 1.254 (7) Å in [Co(DENA)2(C7H5O3)2(H2O)2], (VII) (Hökelek & Necefoğlu, 1997) and 1.254 (2) and 1.251 (2) Å in [Co(NA)2(C7H4NO4)2(H2O)2], (VIII) (Hökelek & Necefoğlu, 1998).

In (I), the average Mn—O bond length is 2.1880 (14) Å and the Mn atoms are displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C12/O4) by -0.857 (1) Å and 1.004 (1) Å, respectively. The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C13—C18) are 11.33 (13)° and 10.90 (9)°, respectively, while those between rings A and B are A/B = 67.88 (6)°. Intramolecular O—H···O hydrogen bonds (Table 2) link the uncoordinated water molecules to the carboxylate groups and coordinated water molecules (Fig. 1).

In the crystal structure, strong intra- and intermolecular O—H···O hydrogen bonds (Table 2) link the molecules into a supramolecular structure, in which they may be effective in the stabilization of the structure. There also exist two weak C—H···π interactions (Table 2).

Experimental

The title compound was prepared by the reaction of MnSO4.H2O (0.85 g, 5 mmol) in H2O (50 ml) and NA (1.22 g, 10 mmol) in H2O (50 ml) with sodium p-dimethylaminobenzoate (2.16 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving single crystals.

Refinement

H atoms of water molecules were located in difference Fourier maps and refined isotropically, with restrains of O5—H51 = 0.970 (16), O5—H52 = 0.903 (17), O6—H61 = 0.931 (16), O6—H62 = 0.896 (18), O7—H71 = 0.973 (16), O7—H72 = 0.894 (17), O8—H81 = 0.895 (17), O8—H82 = 0.957 (19), O9—H91 = 0.930 (17), O9—H92 = 0.90 (2) Å and H51—O5—H52 = 105 (2), H61—O6—H62 = 106 (2), H71—O7—H72 = 106 (2), H81—O8—H82 = 105 (3) and H91—O9—H92 = 105 (3)°. The remaining H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. ...

Crystal data

[Mn(C11H14NO2)2(H2O)3]·2H2OF(000) = 1124
Mr = 529.48Dx = 1.376 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6515 reflections
a = 8.1585 (2) Åθ = 2.3–28.0°
b = 11.2907 (2) ŵ = 0.57 mm1
c = 27.8738 (3) ÅT = 100 K
β = 95.644 (2)°Block, yellow
V = 2555.15 (8) Å30.50 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer6299 independent reflections
Radiation source: fine-focus sealed tube4556 reflections with I > 2σ(I)
graphiteRint = 0.035
[var phi] and ω scansθmax = 28.4°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −9→10
Tmin = 0.870, Tmax = 0.920k = −11→15
22676 measured reflectionsl = −37→35

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0367P)2 + 1.1841P] where P = (Fo2 + 2Fc2)/3
6299 reflections(Δ/σ)max < 0.001
354 parametersΔρmax = 0.66 e Å3
15 restraintsΔρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.50000.00000.00000.01208 (10)
Mn21.00000.00000.00000.01215 (10)
O10.32484 (17)−0.26988 (12)0.00330 (5)0.0168 (3)
O20.56738 (16)−0.17869 (12)0.01144 (5)0.0184 (3)
O30.86399 (16)−0.04378 (12)0.10998 (5)0.0162 (3)
O41.08825 (16)−0.05210 (13)0.07062 (5)0.0167 (3)
O50.41531 (17)0.00670 (13)0.07223 (5)0.0192 (3)
H510.474 (3)−0.037 (2)0.0985 (8)0.045 (8)*
H520.308 (2)−0.011 (2)0.0734 (10)0.047 (8)*
O60.75988 (16)0.05770 (13)0.02674 (5)0.0134 (3)
H610.790 (3)0.043 (2)0.0592 (6)0.037 (7)*
H620.742 (3)0.1359 (16)0.0247 (10)0.057 (9)*
O71.11543 (18)0.17328 (13)0.01223 (5)0.0188 (3)
H711.062 (3)0.2483 (18)0.0034 (9)0.050 (8)*
H721.221 (2)0.182 (3)0.0070 (10)0.055 (9)*
O80.5861 (2)−0.10881 (17)0.14777 (6)0.0313 (4)
H810.568 (4)−0.1863 (17)0.1430 (13)0.094 (14)*
H820.697 (3)−0.096 (3)0.1402 (14)0.098 (13)*
O90.03985 (19)−0.38092 (14)0.01543 (7)0.0276 (4)
H910.148 (2)−0.360 (3)0.0120 (11)0.070 (10)*
H920.035 (6)−0.390 (5)0.0472 (8)0.20 (3)*
N10.7834 (2)−0.64050 (15)0.13131 (6)0.0173 (4)
N21.2766 (2)−0.45986 (16)0.22433 (6)0.0190 (4)
C10.4744 (2)−0.26580 (17)0.01995 (7)0.0147 (4)
C20.5485 (2)−0.36230 (17)0.05081 (7)0.0134 (4)
C30.4689 (2)−0.47050 (18)0.05580 (7)0.0150 (4)
H30.3633−0.48130.04060.018*
C40.5434 (2)−0.56160 (18)0.08273 (7)0.0151 (4)
H40.4869−0.63240.08560.018*
C50.7046 (2)−0.54916 (18)0.10611 (7)0.0148 (4)
C60.7801 (2)−0.43779 (18)0.10262 (7)0.0181 (4)
H60.8834−0.42450.11890.022*
C70.7036 (2)−0.34842 (18)0.07551 (7)0.0161 (4)
H70.7574−0.27620.07360.019*
C80.7200 (3)−0.76135 (18)0.12893 (7)0.0187 (4)
H8A0.8115−0.81610.12850.022*
H8B0.6497−0.77150.09910.022*
C90.6227 (3)−0.7917 (2)0.17097 (8)0.0276 (5)
H9A0.5955−0.87450.16990.041*
H9B0.5234−0.74570.16890.041*
H9C0.6878−0.77430.20070.041*
C100.9497 (3)−0.62677 (19)0.15495 (8)0.0212 (5)
H10A0.9669−0.68420.18090.025*
H10B0.9606−0.54840.16910.025*
C111.0821 (3)−0.6433 (2)0.12076 (9)0.0298 (5)
H11A1.1888−0.63440.13820.045*
H11B1.0684−0.58490.09570.045*
H11C1.0727−0.72100.10680.045*
C121.0033 (2)−0.08717 (17)0.10404 (7)0.0135 (4)
C131.0729 (2)−0.18313 (17)0.13585 (6)0.0126 (4)
C141.0042 (2)−0.21580 (17)0.17791 (6)0.0131 (4)
H140.9107−0.17660.18610.016*
C151.0717 (2)−0.30486 (18)0.20755 (7)0.0152 (4)
H151.0237−0.32360.23550.018*
C161.2121 (2)−0.36804 (17)0.19621 (7)0.0152 (4)
C171.2802 (2)−0.33497 (18)0.15330 (7)0.0163 (4)
H171.3729−0.37430.14450.020*
C181.2114 (2)−0.24579 (17)0.12450 (7)0.0147 (4)
H181.2586−0.22650.09650.018*
C191.2123 (3)−0.48833 (19)0.27032 (7)0.0230 (5)
H19A1.2418−0.56930.27900.028*
H19B1.0931−0.48350.26620.028*
C201.2764 (3)−0.4072 (2)0.31101 (8)0.0293 (5)
H20A1.2227−0.42540.33930.044*
H20B1.2542−0.32640.30180.044*
H20C1.3931−0.41820.31780.044*
C211.4284 (3)−0.51786 (19)0.21392 (8)0.0223 (5)
H21A1.4247−0.52990.17940.027*
H21B1.4330−0.59540.22900.027*
C221.5858 (3)−0.4513 (2)0.23068 (9)0.0343 (6)
H22A1.6787−0.49330.22060.051*
H22B1.5964−0.44530.26520.051*
H22C1.5815−0.37330.21690.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0105 (2)0.0107 (2)0.01513 (19)0.00024 (17)0.00158 (15)0.00282 (17)
Mn20.0106 (2)0.0136 (2)0.01241 (19)0.00140 (17)0.00160 (15)0.00314 (17)
O10.0156 (7)0.0125 (8)0.0219 (7)0.0011 (6)0.0006 (6)0.0018 (6)
O20.0145 (7)0.0122 (8)0.0294 (8)0.0013 (6)0.0073 (6)0.0067 (6)
O30.0157 (7)0.0159 (8)0.0172 (7)0.0028 (6)0.0028 (6)0.0034 (6)
O40.0148 (7)0.0202 (8)0.0151 (7)−0.0004 (6)0.0017 (5)0.0059 (6)
O50.0142 (7)0.0260 (9)0.0175 (7)0.0000 (7)0.0023 (6)0.0031 (6)
O60.0131 (7)0.0132 (8)0.0139 (7)0.0011 (6)0.0008 (5)0.0016 (6)
O70.0146 (8)0.0148 (8)0.0278 (8)0.0007 (6)0.0053 (6)0.0022 (6)
O80.0217 (9)0.0393 (12)0.0325 (9)−0.0029 (8)0.0008 (7)0.0125 (8)
O90.0172 (8)0.0201 (9)0.0458 (10)0.0001 (7)0.0056 (7)0.0033 (8)
N10.0199 (9)0.0104 (9)0.0210 (9)0.0007 (7)−0.0011 (7)0.0030 (7)
N20.0240 (9)0.0180 (9)0.0155 (8)0.0083 (8)0.0043 (7)0.0051 (7)
C10.0194 (10)0.0109 (11)0.0146 (9)0.0014 (8)0.0069 (8)−0.0004 (8)
C20.0152 (10)0.0114 (10)0.0144 (9)0.0035 (8)0.0048 (8)0.0006 (8)
C30.0147 (10)0.0155 (11)0.0152 (9)0.0021 (8)0.0036 (8)0.0006 (8)
C40.0177 (10)0.0118 (11)0.0164 (9)−0.0006 (8)0.0044 (8)0.0006 (8)
C50.0195 (10)0.0130 (10)0.0126 (9)0.0026 (8)0.0043 (8)0.0005 (8)
C60.0152 (10)0.0171 (12)0.0212 (10)−0.0004 (9)−0.0016 (8)0.0014 (8)
C70.0185 (10)0.0106 (10)0.0194 (10)−0.0013 (8)0.0034 (8)0.0008 (8)
C80.0238 (11)0.0104 (11)0.0218 (10)0.0042 (9)0.0017 (9)0.0014 (8)
C90.0349 (13)0.0199 (13)0.0294 (12)−0.0011 (10)0.0104 (10)0.0038 (10)
C100.0221 (11)0.0165 (12)0.0234 (10)0.0015 (9)−0.0050 (9)0.0044 (9)
C110.0230 (12)0.0307 (14)0.0354 (13)0.0032 (10)0.0021 (10)0.0035 (11)
C120.0147 (10)0.0114 (10)0.0138 (9)−0.0025 (8)−0.0012 (7)−0.0011 (7)
C130.0146 (10)0.0105 (10)0.0120 (9)−0.0013 (8)−0.0020 (7)0.0001 (7)
C140.0147 (10)0.0106 (10)0.0141 (9)−0.0005 (8)0.0008 (7)−0.0011 (7)
C150.0199 (10)0.0152 (11)0.0108 (9)−0.0016 (8)0.0028 (8)0.0002 (8)
C160.0202 (11)0.0121 (11)0.0130 (9)0.0021 (8)−0.0007 (8)0.0012 (8)
C170.0170 (10)0.0172 (11)0.0150 (9)0.0036 (8)0.0029 (8)−0.0008 (8)
C180.0168 (10)0.0168 (11)0.0108 (9)−0.0003 (8)0.0025 (7)0.0019 (7)
C190.0281 (12)0.0221 (13)0.0193 (10)0.0117 (10)0.0040 (9)0.0082 (9)
C200.0313 (13)0.0348 (15)0.0218 (11)0.0047 (11)0.0018 (10)0.0026 (10)
C210.0275 (12)0.0201 (13)0.0196 (10)0.0105 (9)0.0039 (9)0.0043 (9)
C220.0265 (13)0.0452 (16)0.0318 (13)0.0062 (12)0.0059 (10)0.0009 (12)

Geometric parameters (Å, °)

Mn1—O22.1071 (14)C6—C51.408 (3)
Mn1—O2i2.1071 (14)C6—C71.373 (3)
Mn1—O52.1932 (14)C6—H60.9300
Mn1—O5i2.1932 (14)C7—H70.9300
Mn1—O62.2725 (13)C8—C91.518 (3)
Mn1—O6i2.2725 (13)C8—H8A0.9700
Mn2—O42.1120 (13)C8—H8B0.9700
Mn2—O4ii2.1120 (13)C9—H9A0.9600
Mn2—O62.2594 (13)C9—H9B0.9600
Mn2—O6ii2.2594 (13)C9—H9C0.9600
Mn2—O72.1835 (14)C10—C111.520 (3)
Mn2—O7ii2.1835 (14)C10—H10A0.9700
O1—C11.263 (2)C10—H10B0.9700
O2—C11.279 (2)C11—H11A0.9600
O3—C121.263 (2)C11—H11B0.9600
O4—C121.278 (2)C11—H11C0.9600
O5—H510.970 (16)C12—C131.478 (3)
O5—H520.903 (17)C13—C181.396 (3)
O6—H610.931 (16)C14—C131.398 (3)
O6—H620.896 (18)C14—C151.381 (3)
O7—H710.973 (16)C14—H140.9300
O7—H720.894 (17)C15—H150.9300
O8—H810.895 (17)C16—C151.412 (3)
O8—H820.957 (19)C16—C171.417 (3)
O9—H910.930 (17)C17—C181.373 (3)
O9—H920.90 (2)C17—H170.9300
N1—C51.372 (2)C18—H180.9300
N1—C81.458 (3)C19—C201.511 (3)
N1—C101.457 (3)C19—H19A0.9700
N2—C161.373 (2)C19—H19B0.9700
N2—C191.468 (2)C20—H20A0.9600
N2—C211.455 (3)C20—H20B0.9600
C1—C21.480 (3)C20—H20C0.9600
C2—C31.397 (3)C21—C221.521 (3)
C2—C71.389 (3)C21—H21A0.9700
C3—H30.9300C21—H21B0.9700
C4—C31.379 (3)C22—H22A0.9600
C4—C51.416 (3)C22—H22B0.9600
C4—H40.9300C22—H22C0.9600
O2i—Mn1—O2180.00 (11)C6—C7—C2122.17 (19)
O2i—Mn1—O590.28 (5)C6—C7—H7118.9
O2—Mn1—O589.72 (5)N1—C8—C9112.74 (17)
O2i—Mn1—O5i89.72 (5)N1—C8—H8A109.0
O2—Mn1—O5i90.28 (5)N1—C8—H8B109.0
O2i—Mn1—O689.78 (5)C9—C8—H8A109.0
O2—Mn1—O690.22 (5)C9—C8—H8B109.0
O2—Mn1—O6i89.78 (5)H8A—C8—H8B107.8
O2i—Mn1—O6i90.22 (5)C8—C9—H9A109.5
O5—Mn1—O5i180.00 (7)C8—C9—H9B109.5
O5—Mn1—O693.27 (5)C8—C9—H9C109.5
O5i—Mn1—O686.73 (5)H9A—C9—H9B109.5
O5—Mn1—O6i86.73 (5)H9A—C9—H9C109.5
O5i—Mn1—O6i93.27 (5)H9B—C9—H9C109.5
O6—Mn1—O6i180.00 (10)N1—C10—C11113.00 (18)
O4—Mn2—O4ii180.00 (8)N1—C10—H10A109.0
O4—Mn2—O6ii90.00 (5)N1—C10—H10B109.0
O4ii—Mn2—O6ii90.00 (5)C11—C10—H10A109.0
O4—Mn2—O690.00 (5)C11—C10—H10B109.0
O4ii—Mn2—O690.00 (5)H10A—C10—H10B107.8
O4—Mn2—O790.10 (5)C10—C11—H11A109.5
O4ii—Mn2—O789.90 (5)C10—C11—H11B109.5
O4—Mn2—O7ii89.90 (5)C10—C11—H11C109.5
O4ii—Mn2—O7ii90.10 (5)H11A—C11—H11B109.5
O6ii—Mn2—O6180.00 (6)H11A—C11—H11C109.5
O7—Mn2—O7ii180.00 (8)H11B—C11—H11C109.5
O7—Mn2—O6ii86.29 (5)O3—C12—O4122.35 (18)
O7ii—Mn2—O6ii93.71 (5)O3—C12—C13120.23 (17)
O7—Mn2—O693.71 (5)O4—C12—C13117.42 (17)
O7ii—Mn2—O686.29 (5)C14—C13—C12122.31 (17)
C1—O2—Mn1127.87 (12)C18—C13—C12120.51 (17)
C12—O4—Mn2127.31 (12)C18—C13—C14117.18 (17)
Mn1—O5—H51120.1 (16)C13—C14—H14119.2
Mn1—O5—H52114.8 (18)C15—C14—C13121.64 (18)
H52—O5—H51105 (2)C15—C14—H14119.2
Mn1—O6—H61114.7 (15)C14—C15—C16121.24 (18)
Mn1—O6—H6297.0 (18)C14—C15—H15119.4
Mn2—O6—Mn1128.35 (6)C16—C15—H15119.4
Mn2—O6—H6196.4 (15)N2—C16—C15121.84 (17)
Mn2—O6—H62113.8 (19)N2—C16—C17121.39 (18)
H61—O6—H62106 (2)C15—C16—C17116.73 (18)
Mn2—O7—H71124.4 (16)C18—C17—C16121.00 (18)
Mn2—O7—H72118.9 (19)C18—C17—H17119.5
H72—O7—H71106 (2)C16—C17—H17119.5
H81—O8—H82105 (3)C17—C18—C13122.20 (18)
H91—O9—H92105 (3)C17—C18—H18118.9
C5—N1—C8122.25 (17)C13—C18—H18118.9
C5—N1—C10121.36 (17)N2—C19—C20113.32 (18)
C10—N1—C8115.50 (16)N2—C19—H19A108.9
C16—N2—C19120.96 (16)N2—C19—H19B108.9
C16—N2—C21120.77 (16)C20—C19—H19A108.9
C21—N2—C19117.38 (16)C20—C19—H19B108.9
O1—C1—O2121.96 (18)H19A—C19—H19B107.7
O1—C1—C2120.75 (17)C19—C20—H20A109.5
O2—C1—C2117.28 (17)C19—C20—H20B109.5
C3—C2—C1122.32 (17)C19—C20—H20C109.5
C7—C2—C1120.34 (18)H20A—C20—H20B109.5
C7—C2—C3117.33 (18)H20A—C20—H20C109.5
C2—C3—H3119.3H20B—C20—H20C109.5
C4—C3—C2121.48 (18)N2—C21—C22115.19 (19)
C4—C3—H3119.3N2—C21—H21A108.5
C3—C4—C5121.09 (19)N2—C21—H21B108.5
C3—C4—H4119.5C22—C21—H21A108.5
C5—C4—H4119.5C22—C21—H21B108.5
N1—C5—C4121.91 (18)H21A—C21—H21B107.5
N1—C5—C6121.37 (18)C21—C22—H22A109.5
C6—C5—C4116.72 (18)C21—C22—H22B109.5
C5—C6—H6119.5C21—C22—H22C109.5
C7—C6—C5121.07 (18)H22A—C22—H22B109.5
C7—C6—H6119.5H22A—C22—H22C109.5
C2—C7—H7118.9H22B—C22—H22C109.5
O5—Mn1—O2—C160.63 (16)C16—N2—C19—C20−79.2 (2)
O5i—Mn1—O2—C1−119.37 (16)C21—N2—C19—C2090.1 (2)
O6—Mn1—O2—C1153.90 (16)C16—N2—C21—C2278.8 (2)
O6i—Mn1—O2—C1−26.10 (16)C19—N2—C21—C22−90.5 (2)
O2i—Mn1—O6—Mn2−125.04 (8)O1—C1—C2—C312.0 (3)
O2—Mn1—O6—Mn254.96 (8)O1—C1—C2—C7−169.14 (18)
O5—Mn1—O6—Mn2144.69 (8)O2—C1—C2—C3−168.63 (17)
O5i—Mn1—O6—Mn2−35.31 (8)O2—C1—C2—C710.2 (3)
O6ii—Mn2—O4—C12−151.88 (16)C1—C2—C3—C4176.60 (18)
O6—Mn2—O4—C1228.12 (16)C7—C2—C3—C4−2.3 (3)
O7—Mn2—O4—C12121.83 (16)C1—C2—C7—C6−176.75 (18)
O7ii—Mn2—O4—C12−58.17 (16)C3—C2—C7—C62.2 (3)
O4—Mn2—O6—Mn1−124.77 (8)C5—C4—C3—C2−0.5 (3)
O4ii—Mn2—O6—Mn155.23 (8)C3—C4—C5—N1−177.13 (18)
O7—Mn2—O6—Mn1145.13 (8)C3—C4—C5—C63.4 (3)
O7ii—Mn2—O6—Mn1−34.87 (8)C7—C6—C5—N1176.98 (18)
Mn1—O2—C1—O131.0 (3)C7—C6—C5—C4−3.5 (3)
Mn1—O2—C1—C2−148.33 (13)C5—C6—C7—C20.8 (3)
Mn2—O4—C12—O3−36.7 (3)O3—C12—C13—C14−11.0 (3)
Mn2—O4—C12—C13142.49 (14)O3—C12—C13—C18168.54 (18)
C8—N1—C5—C410.9 (3)O4—C12—C13—C14169.77 (17)
C8—N1—C5—C6−169.68 (18)O4—C12—C13—C18−10.7 (3)
C10—N1—C5—C4179.60 (18)C12—C13—C18—C17179.60 (18)
C10—N1—C5—C6−0.9 (3)C14—C13—C18—C17−0.8 (3)
C5—N1—C8—C9−97.7 (2)C15—C14—C13—C12−179.32 (18)
C10—N1—C8—C992.9 (2)C15—C14—C13—C181.1 (3)
C5—N1—C10—C11−82.3 (2)C13—C14—C15—C16−0.9 (3)
C8—N1—C10—C1187.2 (2)N2—C16—C15—C14−177.38 (18)
C19—N2—C16—C17175.89 (19)C17—C16—C15—C140.4 (3)
C19—N2—C16—C15−6.5 (3)N2—C16—C17—C18177.68 (19)
C21—N2—C16—C15−175.42 (19)C15—C16—C17—C18−0.1 (3)
C21—N2—C16—C176.9 (3)C16—C17—C18—C130.3 (3)

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+2, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H51···O80.97 (2)1.77 (2)2.738 (2)177 (2)
O5—H52···O4iii0.90 (2)1.85 (2)2.7457 (19)175 (3)
O6—H61···O30.93 (2)1.78 (2)2.651 (2)156 (2)
O6—H62···O1i0.90 (2)1.76 (2)2.608 (2)156 (3)
O7—H71···O9i0.97 (2)1.77 (2)2.739 (2)177 (1)
O7—H72···O2ii0.89 (2)1.85 (2)2.733 (2)170 (3)
O8—H82···O30.96 (3)1.77 (3)2.694 (2)160 (3)
O9—H91···O10.93 (2)1.80 (2)2.692 (2)160 (3)
C6—H6···Cg20.932.913.764 (2)154
C19—H19A···Cg2iv0.972.903.830 (2)162

Symmetry codes: (iii) x−1, y, z; (i) −x+1, −y, −z; (ii) −x+2, −y, −z; (iv) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2525).

References

  • Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.
  • Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim.20, 1075–1080.
  • Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem.21, 1391–1395.
  • Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim.15, 1098–1103.
  • Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Catterick, J., Hursthouse, M. B., New, D. B. & Thorhton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.
  • Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct.215, 169–172.
  • Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561–m2562.
  • Hökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505–m506. [PMC free article] [PubMed]
  • Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.
  • Hökelek, T. & Necefoğlu, H. (1997). Acta Cryst. C53, 187–189.
  • Hökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242–1244.
  • Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.
  • Hökelek, T., Necefoğlu, H. & Balcı (1995). Acta Cryst. C51, 2020–2023.
  • Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr.27, 108–111. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim.7, 1409–1416.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography