PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1563–o1564.
Published online 2009 June 13. doi:  10.1107/S1600536809021849
PMCID: PMC2969300

4-(Carboxy­meth­yl)anilinium chloride

Abstract

In the crystal of the title compound, C8H10NO2 +·Cl, alternating layers of hydro­phobic and hydro­philic zones stack along the c axis. The chloride anions are sandwiched between the 4-(carboxy­meth­yl)anilinium layers, forming inter­molecular O—H(...)Cl and N—H(...)Cl hydrogen bonds with the ammonium and carboxyl groups of the cations. In addition, inter­molecular N—H(...)O and weak C—H(...)O and C—H(...)Cl hydrogen bonds help stabilize the crystal structure.

Related literature

For our ongoing studies of hydrogen-bonding inter­actions in the crystal structures of protonated amines, see: Benslimane et al. (2007 [triangle]); Bouacida et al. (2005a [triangle],b [triangle],c [triangle], 2006 [triangle], 2007 [triangle], 2008 [triangle], 2009 [triangle]). For amino acids in which the amino N atom is protonated, see: Bouacida et al. (2006); Rademeyer (2004a [triangle],b [triangle]). For a related structure, see: Benslimane et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1563-scheme1.jpg

Experimental

Crystal data

  • C8H10NO2 +·Cl
  • M r = 187.62
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1563-efi1.jpg
  • a = 4.4982 (4) Å
  • b = 11.0790 (11) Å
  • c = 17.7120 (17) Å
  • β = 95.429 (3)°
  • V = 878.73 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.39 mm−1
  • T = 100 K
  • 0.44 × 0.12 × 0.1 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.809, T max = 0.962
  • 7536 measured reflections
  • 2006 independent reflections
  • 1785 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.08
  • S = 1.03
  • 2006 reflections
  • 113 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg & Berndt, 2001 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021849/lh2838sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021849/lh2838Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Dr Thierry Roisnel, Centre de Diffractométrie X (CDIFX) de Rennes, Université de Rennes 1, France, for data-collection facilities. SB thanks Université A. Mira de Béjaia, Algeria, for financial support.

supplementary crystallographic information

Comment

The title compound, was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structure of protonated amines (Bouacida et al., 2005a,b,c, 2006, 2007, 2008, 2009).

The molecular structure of (I), and the atomic numbering used, is illustrated in Fig. 1. All bond distances (Allen et al., 1987) and angles are within the ranges of accepted values. The amino N atom is protonated as in previously reported amino acids (Bouacida & al., 2006; Rademeyer, 2004a,b). The layered crystal packing of (I) is shown in Fig. 2, in which cations form alterning layers of 4-(carboxymethyl)anilinium of hydrophobic and hydrophilic zones along the c axis, and the chloride ions are located between these layers. In the structure, two types of classical hydrogen bonds are observed, viz. cation–anion and cation–cation (Fig. 3). The 4-(carboxymethyl)anilinium cations and the chloride anions form hydrogen-bonded double layers at z = 0 and z = 1/2, linked by N—H···Cl, C—H···Cl and O—H···Cl hydrogen bonds. Additional hydrogen-bonding parameters are listed in Table 1. These interaction bonds link the cations and the anions together, forming a three-dimensional network and reinforcing the cohesion of the ionic structure.

Experimental

The title compound was crystallized by slow evaporation of an aqueous solution of 4-aminophenyl acetic acid, tin(II) chloride dihydrate and hydrochloric acid in a molar ratio of 5:5:1. White stick-like crystals were obtained after two weeks.

Refinement

All H atoms were located in Fourier maps but introduced in calculated positions and treated as riding on their parent C, O and N atoms with C—H = 0.93–0.97 Å, O—H = 0.82Å and N—H = 0.89Å and Uiso(H) =1.5–1.2(carrier atom).

Figures

Fig. 1.
The asymmetric unit of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.
Fig. 2.
Part of the crystal structure illustrating the molecular layers, viewed along the b axis.
Fig. 3.
Part of the crystal structure with hydrogen bonds shown as dashed lines, viewed along the a axis.

Crystal data

C8H10NO2+·ClF(000) = 392
Mr = 187.62Dx = 1.418 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3208 reflections
a = 4.4982 (4) Åθ = 2.3–27.4°
b = 11.0790 (11) ŵ = 0.39 mm1
c = 17.7120 (17) ÅT = 100 K
β = 95.429 (3)°Stick, white
V = 878.73 (14) Å30.44 × 0.12 × 0.1 mm
Z = 4

Data collection

Bruker APEXII diffractometer1785 reflections with I > 2σ(I)
graphiteRint = 0.040
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 3.7°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −5→5
Tmin = 0.809, Tmax = 0.962k = −14→14
7536 measured reflectionsl = −22→22
2006 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.08H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0283P)2 + 0.5301P] where P = (Fo2 + 2Fc2)/3
2006 reflections(Δ/σ)max = 0.001
113 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.33999 (7)0.14718 (3)0.035821 (18)0.01567 (11)
O10.7756 (3)0.59938 (11)0.02054 (6)0.0270 (3)
H10.72380.66600.00400.040*
O20.5016 (3)0.65210 (10)0.11399 (6)0.0257 (3)
N10.3016 (3)0.37706 (11)0.40929 (7)0.0145 (3)
H1A0.18240.31280.40510.022*
H1B0.19690.44140.42120.022*
H1C0.44940.36420.44550.022*
C10.4271 (3)0.39836 (13)0.33671 (8)0.0126 (3)
C20.3601 (3)0.32006 (13)0.27659 (8)0.0148 (3)
H20.23770.25350.28170.018*
C30.4804 (3)0.34312 (13)0.20801 (8)0.0155 (3)
H30.43730.29110.16720.019*
C40.6631 (3)0.44257 (13)0.19984 (8)0.0145 (3)
C50.7279 (3)0.51913 (14)0.26215 (8)0.0176 (3)
H50.85240.58530.25760.021*
C60.6098 (3)0.49813 (14)0.33049 (8)0.0166 (3)
H60.65220.54990.37140.020*
C70.7903 (3)0.46817 (14)0.12557 (8)0.0180 (3)
H7A0.74560.40060.09160.022*
H7B1.00600.47440.13470.022*
C80.6709 (3)0.58249 (14)0.08711 (8)0.0157 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.01972 (19)0.01379 (19)0.01353 (18)0.00041 (13)0.00178 (13)0.00186 (12)
O10.0392 (7)0.0206 (6)0.0239 (6)0.0128 (5)0.0181 (5)0.0103 (5)
O20.0361 (7)0.0226 (6)0.0203 (6)0.0151 (5)0.0123 (5)0.0061 (5)
N10.0169 (6)0.0146 (6)0.0124 (6)−0.0011 (5)0.0034 (5)−0.0013 (5)
C40.0141 (6)0.0146 (7)0.0150 (7)0.0054 (5)0.0026 (5)0.0034 (5)
C10.0131 (6)0.0142 (7)0.0108 (6)0.0020 (5)0.0025 (5)0.0023 (5)
C60.0173 (7)0.0163 (7)0.0160 (7)−0.0025 (6)0.0003 (5)−0.0027 (6)
C30.0190 (7)0.0138 (7)0.0137 (7)0.0024 (6)0.0011 (5)−0.0020 (5)
C70.0199 (7)0.0173 (7)0.0178 (7)0.0043 (6)0.0071 (6)0.0034 (6)
C80.0156 (7)0.0161 (7)0.0157 (7)0.0003 (6)0.0034 (5)0.0007 (6)
C50.0152 (7)0.0173 (7)0.0206 (7)−0.0039 (6)0.0032 (5)0.0013 (6)
C20.0161 (6)0.0123 (7)0.0159 (7)−0.0021 (6)0.0014 (5)0.0000 (6)

Geometric parameters (Å, °)

O1—C81.3234 (17)C1—C61.388 (2)
O1—H10.8200C6—C51.387 (2)
O2—C81.2121 (18)C6—H60.9300
N1—C11.4709 (17)C3—C21.399 (2)
N1—H1A0.8900C3—H30.9300
N1—H1B0.8900C7—C81.512 (2)
N1—H1C0.8900C7—H7A0.9700
C4—C31.390 (2)C7—H7B0.9700
C4—C51.401 (2)C5—H50.9300
C4—C71.5100 (19)C2—H20.9300
C1—C21.384 (2)
C8—O1—H1109.5C4—C3—H3119.5
C1—N1—H1A109.5C2—C3—H3119.5
C1—N1—H1B109.5C4—C7—C8113.72 (12)
H1A—N1—H1B109.5C4—C7—H7A108.8
C1—N1—H1C109.5C8—C7—H7A108.8
H1A—N1—H1C109.5C4—C7—H7B108.8
H1B—N1—H1C109.5C8—C7—H7B108.8
C3—C4—C5118.62 (13)H7A—C7—H7B107.7
C3—C4—C7121.06 (13)O2—C8—O1123.32 (14)
C5—C4—C7120.33 (13)O2—C8—C7124.41 (13)
C2—C1—C6121.69 (13)O1—C8—C7112.27 (12)
C2—C1—N1119.89 (12)C6—C5—C4121.20 (14)
C6—C1—N1118.42 (12)C6—C5—H5119.4
C5—C6—C1118.77 (13)C4—C5—H5119.4
C5—C6—H6120.6C1—C2—C3118.67 (13)
C1—C6—H6120.6C1—C2—H2120.7
C4—C3—C2121.05 (13)C3—C2—H2120.7
C2—C1—C6—C5−0.1 (2)C4—C7—C8—O1−176.97 (13)
N1—C1—C6—C5−179.72 (13)C1—C6—C5—C40.7 (2)
C5—C4—C3—C20.7 (2)C3—C4—C5—C6−1.0 (2)
C7—C4—C3—C2−179.38 (13)C7—C4—C5—C6179.07 (13)
C3—C4—C7—C8113.71 (16)C6—C1—C2—C3−0.2 (2)
C5—C4—C7—C8−66.37 (18)N1—C1—C2—C3179.42 (12)
C4—C7—C8—O23.9 (2)C4—C3—C2—C1−0.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···Cl1i0.822.203.0087 (13)171
N1—H1A···O2ii0.891.982.8517 (17)167
N1—H1B···Cl1iii0.892.413.2285 (13)152
N1—H1C···Cl1iv0.892.263.1516 (14)174
C2—H2···O2ii0.932.493.2338 (18)137
C3—H3···Cl10.932.823.7481 (15)175

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2838).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Benslimane, M., Merazig, H., Bouacida, S., Denbri, S., Beghidja, A. & Ouahab, L. (2007). Acta Cryst. E63, o3682–o3683.
  • Bouacida, S. (2008). PhD thesis, Montouri–Constantine University, Algeria.
  • Bouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628–o629. [PMC free article] [PubMed]
  • Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005a). Acta Cryst. E61, m1153–m1155.
  • Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005b). Acta Cryst. E61, m2072–m2074.
  • Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005c). Acta Cryst. E61, m577–m579.
  • Bouacida, S., Merazig, H. & Benard-Rocherulle, P. (2006). Acta Cryst. E62, o838–o840.
  • Bouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379–m381.
  • Brandenburg, K. & Berndt, M. (2001). DIAMOND Version 3.1e. Crystal Impact, Bonn, Germany.
  • Bruker (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Rademeyer, M. (2004a). Acta Cryst. C60, m55–m56. [PubMed]
  • Rademeyer, M. (2004b). Acta Cryst. E60, m345–m347.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography