PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m739–m740.
Published online 2009 June 6. doi:  10.1107/S160053680901959X
PMCID: PMC2969295

Dichloridobis(phenanthridine-κN)zinc(II)

Abstract

In the mol­ecule of the title compound, [ZnCl2(C13H9N)2], the ZnII atom is four-coordinated in a distorted tetra­hedral configuration by two N atoms from two phenanthridine ligands and by two terminal Cl atoms. The dihedral angle between the planes of the phenanthridine ring systems is 69.92 (3)°. An intra­molecular C—H(...)Cl inter­action results in the formation of a planar five-membered ring, which is oriented at a dihedral angle of 8.32 (3)° with respect to the adjacent phenanthridine ring system. In the crystal structure, π–π contacts between the phenanthridine systems [centroid–centroid distances = 3.839 (2), 3.617 (1) and 3.682 (1) Å] may stabilize the structure. Two weak C—H(...)π inter­actions are also found.

Related literature

For related structures, see: Ahmadi et al. (2008 [triangle]); Çelik et al. (2004 [triangle]); Cui et al. (1998 [triangle]); Gruia et al. (2007 [triangle]); Khalighi et al. (2008 [triangle]); Khan & Tuck (1984 [triangle]); Khavasi et al. (2008 [triangle]); Kozhevnikov et al. (2006 [triangle]); Liu et al. (2004 [triangle]); Markowitz et al. (2006 [triangle]); Musie et al. (2004 [triangle]); Preston & Kennard (1969 [triangle]); Reimann et al. (1966 [triangle]); Shen et al. (2004 [triangle]); Steffen & Palenik (1977 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m739-scheme1.jpg

Experimental

Crystal data

  • [ZnCl2(C13H9N)2]
  • M r = 494.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m739-efi1.jpg
  • a = 16.193 (3) Å
  • b = 10.101 (2) Å
  • c = 14.491 (3) Å
  • β = 116.02 (3)°
  • V = 2130.0 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.42 mm−1
  • T = 298 K
  • 0.45 × 0.30 × 0.22 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.610, T max = 0.740
  • 16947 measured reflections
  • 5732 independent reflections
  • 4612 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.086
  • S = 1.09
  • 5732 reflections
  • 280 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901959X/hk2696sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901959X/hk2696Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Damghan University of Basic Sciences for financial support.

supplementary crystallographic information

Comment

There are several ZnII complexes, with formula, [ZnCl2(N)2], such as [ZnCl2(AMS)2], (II) (Shen et al., 2004), [ZnCl2(4-CNpy)2], (III) (Steffen & Palenik, 1977), [ZnCl2(pht)2], (IV) (Çelik et al., 2004), [ZnCl2(quin)2], (V) (Cui et al., 1998), [ZnCl2(quino)2], (VI) (Markowitz et al., 2006) and [ZnCl2(meim)2], (VII) (Musie et al., 2004) [where AMS is 3-Amino-5-methylisoxazole, 4-CNpy is 4-cyanopyridine, pht is phthalazine, quin is quinoline, quino is quinoxaline and meim is 1-methylimidazole] have been synthesized and characterized by single-crystal X-ray diffraction methods.

There are also several ZnII complexes, with formula, [ZnCl2(N—N)], such as [ZnCl2(bipy)], (VIII) (Khan & Tuck, 1984), [ZnCl2(biim)], (IX) (Gruia et al., 2007), [ZnCl2(phbipy)], (X) (Kozhevnikov et al., 2006), [ZnCl2(phen)], (XI) (Reimann et al., 1966), [ZnCl2(dmphen)], (XII) (Preston & Kennard, 1969), [ZnCl2(dpdmbip)], (XIII) (Liu et al., 2004), [ZnCl2(dm4bt)], (XIV) (Khavasi et al., 2008), [ZnCl2(5,5'-dmbpy)], (XV) (Khalighi et al., 2008) and [ZnCl2(6-mbipy)], (XVI) (Ahmadi et al., 2008) [where bipy is 2,2'-bipyridine, biim is 2,2'-biimidazole, phbipy is 5-phenyl-2,2'-bipyridine, phen is 1,10-phenanthroline, dmphen is 2,9-dimethyl-1,10-phenanthroline, dpdmbip is 4,4'-diphenyl-6,6'-dimethyl-2,2'-bipyrimidine, dm4bt is 2,2'-dimethyl-4,4'-bithiazole, 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine and 6-mbipy is 6-methyl-2,2'-bipyridine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of the title compound (Fig 1), ZnII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from two phenanthridine and two terminal Cl atoms (Table 1). The bond lengths (Allen et al., 1987) and angles are within normal ranges. Phenanthridine ring systems A (N1/C1-C13) and B (N2/C14-C26) are, of course, planar and the dihedral angle between them is A/B = 69.92 (3)°. Intramolecular C-H···Cl interaction (Table 2) results in the formation of a planar five-membered ring C (Zn1/Cl1/N1/C1/H1), which is oriented with respect to the adjacent phenanthridine ring system A at a dihedral angle of 8.32 (3)°.

In the crystal structure (Fig. 2), the π–π contacts between the phenanthridine rings, Cg2—Cg3i, Cg4—Cg6ii and Cg6—Cg6ii, [symmetry codes: (i) 1 - x, -y, -z, (ii) -x, -y, -z, where Cg2, Cg3, Cg4 and Cg6 are centroids of the rings (C2-C7), (C8-C13), (N2/C14/C15/C20/C21/C26) and (C21-C26), respectively] may stabilize the structure, with centroid-centroid distances of 3.839 (2), 3.617 (1) and 3.682 (1) Å, respectively. There also exist two weak C—H···π interactions (Table 2).

Experimental

For the preparation of the title compound, (I), a solution of phenanthridine (0.30 g, 1.66 mmol) in methanol (15 ml) was added to a solution of ZnCl2 (0.11 g, 0.83 mmol) in acetonitrile (30 ml) and the resulting colorless solution was stirred for 30 min at 313 K, and then it was left to evaporate slowly at room temperature. After one week, colorless prismatic crystals of the title compound were isolated (yield; 0.31 g, 75.5%).

Refinement

H atoms were positioned geometrically, with C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
Fig. 2.
A partial packing diagram of the title compound.

Crystal data

[ZnCl2(C13H9N)2]F(000) = 1008
Mr = 494.71Dx = 1.543 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1987 reflections
a = 16.193 (3) Åθ = 2.5–29.3°
b = 10.101 (2) ŵ = 1.42 mm1
c = 14.491 (3) ÅT = 298 K
β = 116.02 (3)°Prism, colorless
V = 2130.0 (9) Å30.45 × 0.30 × 0.22 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer5732 independent reflections
Radiation source: fine-focus sealed tube4612 reflections with I > 2σ(I)
graphiteRint = 0.041
[var phi] and ω scansθmax = 29.3°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −22→22
Tmin = 0.610, Tmax = 0.740k = −13→13
16947 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.038P)2 + 0.5741P] where P = (Fo2 + 2Fc2)/3
5732 reflections(Δ/σ)max = 0.013
280 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.259400 (15)0.26111 (2)0.120119 (17)0.03590 (7)
Cl10.25049 (4)0.47913 (5)0.09659 (5)0.05264 (14)
Cl20.27473 (4)0.19233 (6)0.27420 (4)0.05102 (14)
N10.37559 (11)0.19993 (17)0.10537 (13)0.0373 (3)
N20.14942 (10)0.17454 (16)−0.00248 (12)0.0338 (3)
C10.42820 (14)0.2930 (2)0.09724 (16)0.0410 (4)
H10.40560.37910.08630.049*
C20.51762 (14)0.2716 (2)0.10399 (16)0.0417 (4)
C30.57131 (17)0.3780 (3)0.09923 (19)0.0528 (6)
H30.54810.46370.09020.063*
C40.65812 (18)0.3558 (3)0.1079 (2)0.0626 (7)
H40.69360.42600.10390.075*
C50.69249 (18)0.2273 (3)0.1228 (2)0.0674 (8)
H50.75120.21240.12830.081*
C60.64215 (16)0.1227 (3)0.1293 (2)0.0574 (6)
H60.66720.03800.14010.069*
C70.55249 (14)0.1417 (2)0.11974 (15)0.0432 (5)
C80.49487 (14)0.0368 (2)0.12662 (15)0.0409 (4)
C90.52121 (17)−0.0978 (2)0.13981 (17)0.0503 (5)
H90.5782−0.12180.14410.060*
C100.46418 (19)−0.1931 (2)0.14633 (18)0.0548 (6)
H100.4828−0.28120.15470.066*
C110.37861 (18)−0.1601 (2)0.14065 (18)0.0517 (5)
H110.3404−0.22590.14530.062*
C120.35073 (16)−0.0305 (2)0.12812 (16)0.0448 (5)
H120.2939−0.00840.12510.054*
C130.40733 (14)0.0686 (2)0.11980 (14)0.0377 (4)
C140.16296 (13)0.12723 (19)−0.07864 (15)0.0360 (4)
H140.22220.1316−0.07360.043*
C150.09352 (13)0.06958 (18)−0.16859 (14)0.0348 (4)
C160.11488 (16)0.0160 (2)−0.24580 (16)0.0417 (4)
H160.17470.0203−0.23890.050*
C170.04765 (18)−0.0419 (2)−0.33016 (18)0.0486 (5)
H170.0615−0.0771−0.38100.058*
C18−0.04216 (17)−0.0482 (2)−0.34024 (18)0.0510 (5)
H18−0.0876−0.0881−0.39810.061*
C19−0.06479 (15)0.0033 (2)−0.26642 (17)0.0454 (5)
H19−0.1250−0.0022−0.27460.054*
C200.00307 (13)0.06448 (18)−0.17833 (14)0.0343 (4)
C21−0.01463 (13)0.12123 (18)−0.09734 (15)0.0343 (4)
C22−0.10280 (14)0.1282 (2)−0.10056 (17)0.0430 (5)
H22−0.15310.0952−0.15740.052*
C23−0.11556 (15)0.1830 (2)−0.02101 (19)0.0481 (5)
H23−0.17430.1872−0.02470.058*
C24−0.04179 (17)0.2319 (2)0.06441 (19)0.0476 (5)
H24−0.05100.26780.11830.057*
C250.04526 (15)0.2277 (2)0.07015 (17)0.0417 (4)
H250.09470.26080.12790.050*
C260.05989 (12)0.17376 (18)−0.01046 (14)0.0328 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.02853 (11)0.03705 (12)0.03880 (12)−0.00174 (9)0.01173 (8)−0.00362 (9)
Cl10.0510 (3)0.0376 (3)0.0687 (4)0.0014 (2)0.0258 (3)−0.0007 (2)
Cl20.0481 (3)0.0596 (3)0.0436 (3)−0.0047 (3)0.0185 (2)0.0027 (2)
N10.0312 (8)0.0388 (8)0.0385 (8)0.0034 (7)0.0120 (7)−0.0012 (7)
N20.0265 (7)0.0339 (7)0.0374 (8)−0.0007 (6)0.0107 (6)−0.0010 (6)
C10.0341 (10)0.0424 (10)0.0442 (11)0.0019 (8)0.0149 (8)−0.0014 (8)
C20.0317 (9)0.0543 (12)0.0367 (10)−0.0003 (9)0.0127 (8)−0.0022 (9)
C30.0439 (12)0.0640 (15)0.0506 (13)−0.0062 (11)0.0207 (10)−0.0017 (11)
C40.0429 (13)0.087 (2)0.0608 (15)−0.0129 (13)0.0250 (12)−0.0031 (14)
C50.0333 (11)0.104 (2)0.0666 (16)0.0047 (14)0.0232 (11)−0.0006 (15)
C60.0354 (11)0.0780 (17)0.0564 (14)0.0117 (12)0.0178 (10)0.0020 (12)
C70.0311 (9)0.0620 (13)0.0325 (10)0.0082 (9)0.0103 (8)−0.0010 (9)
C80.0339 (9)0.0511 (11)0.0306 (9)0.0092 (9)0.0075 (7)−0.0005 (8)
C90.0453 (12)0.0557 (13)0.0419 (11)0.0201 (11)0.0116 (10)0.0029 (10)
C100.0656 (16)0.0453 (12)0.0409 (11)0.0180 (12)0.0116 (11)0.0035 (9)
C110.0556 (14)0.0425 (11)0.0462 (12)−0.0001 (10)0.0123 (10)0.0037 (9)
C120.0395 (11)0.0457 (11)0.0430 (11)0.0007 (9)0.0125 (9)−0.0004 (9)
C130.0329 (9)0.0412 (10)0.0317 (9)0.0044 (8)0.0074 (7)−0.0023 (8)
C140.0286 (9)0.0373 (9)0.0394 (10)−0.0009 (7)0.0125 (8)0.0010 (8)
C150.0346 (9)0.0313 (9)0.0351 (9)−0.0016 (7)0.0121 (8)0.0008 (7)
C160.0436 (11)0.0391 (10)0.0431 (11)0.0040 (9)0.0198 (9)0.0000 (8)
C170.0593 (14)0.0412 (11)0.0448 (12)−0.0011 (10)0.0223 (11)−0.0077 (9)
C180.0519 (13)0.0433 (11)0.0459 (12)−0.0085 (10)0.0105 (10)−0.0100 (9)
C190.0383 (10)0.0408 (10)0.0488 (12)−0.0094 (9)0.0116 (9)−0.0039 (9)
C200.0313 (9)0.0286 (8)0.0375 (9)−0.0026 (7)0.0099 (7)0.0025 (7)
C210.0306 (9)0.0295 (8)0.0405 (10)−0.0020 (7)0.0133 (8)0.0036 (7)
C220.0307 (9)0.0444 (11)0.0513 (12)−0.0046 (8)0.0155 (9)−0.0001 (9)
C230.0359 (10)0.0465 (11)0.0676 (15)0.0004 (9)0.0278 (10)0.0024 (10)
C240.0468 (12)0.0447 (11)0.0588 (13)0.0003 (10)0.0302 (11)−0.0060 (10)
C250.0378 (10)0.0409 (10)0.0455 (11)−0.0024 (8)0.0175 (9)−0.0062 (8)
C260.0287 (8)0.0290 (8)0.0394 (9)−0.0012 (7)0.0138 (7)0.0014 (7)

Geometric parameters (Å, °)

Cl1—Zn12.2234 (7)C12—H120.9300
Cl2—Zn12.2456 (7)C13—N11.405 (3)
N1—Zn12.0785 (17)C14—N21.306 (2)
N2—Zn12.0775 (17)C14—C151.420 (3)
C1—N11.308 (3)C14—H140.9300
C1—C21.424 (3)C15—C201.410 (3)
C1—H10.9300C15—C161.416 (3)
C2—C31.402 (3)C16—C171.361 (3)
C2—C71.407 (3)C16—H160.9300
C3—C41.374 (4)C17—C181.398 (4)
C3—H30.9300C17—H170.9300
C4—C51.392 (4)C18—C191.376 (3)
C4—H40.9300C18—H180.9300
C5—C61.363 (4)C19—C201.410 (3)
C5—H50.9300C19—H190.9300
C6—C71.410 (3)C20—C211.443 (3)
C6—H60.9300C21—C221.410 (3)
C7—C81.444 (3)C21—C261.411 (3)
C8—C91.412 (3)C22—C231.374 (3)
C8—C131.414 (3)C22—H220.9300
C9—C101.366 (4)C23—C241.380 (3)
C9—H90.9300C23—H230.9300
C10—C111.392 (4)C24—C251.376 (3)
C10—H100.9300C24—H240.9300
C11—C121.371 (3)C25—C261.400 (3)
C11—H110.9300C25—H250.9300
C12—C131.398 (3)C26—N21.403 (2)
N2—Zn1—N1105.19 (7)C11—C12—C13120.3 (2)
N2—Zn1—Cl1108.18 (5)C11—C12—H12119.8
N1—Zn1—Cl1106.23 (5)C13—C12—H12119.8
N2—Zn1—Cl2113.54 (5)C12—C13—N1118.57 (18)
N1—Zn1—Cl2107.46 (6)C12—C13—C8120.43 (19)
Cl1—Zn1—Cl2115.49 (3)N1—C13—C8121.00 (19)
C1—N1—C13118.80 (18)N2—C14—C15124.52 (18)
C1—N1—Zn1116.76 (14)N2—C14—H14117.7
C13—N1—Zn1123.65 (14)C15—C14—H14117.7
C14—N2—C26118.60 (16)C20—C15—C16120.69 (18)
C14—N2—Zn1118.54 (13)C20—C15—C14118.46 (18)
C26—N2—Zn1122.69 (13)C16—C15—C14120.84 (19)
N1—C1—C2124.6 (2)C17—C16—C15119.8 (2)
N1—C1—H1117.7C17—C16—H16120.1
C2—C1—H1117.7C15—C16—H16120.1
C3—C2—C7120.6 (2)C16—C17—C18119.9 (2)
C3—C2—C1120.9 (2)C16—C17—H17120.0
C7—C2—C1118.4 (2)C18—C17—H17120.0
C4—C3—C2120.2 (3)C19—C18—C17121.4 (2)
C4—C3—H3119.9C19—C18—H18119.3
C2—C3—H3119.9C17—C18—H18119.3
C3—C4—C5119.3 (3)C18—C19—C20120.1 (2)
C3—C4—H4120.3C18—C19—H19119.9
C5—C4—H4120.3C20—C19—H19119.9
C6—C5—C4121.5 (2)C15—C20—C19118.01 (19)
C6—C5—H5119.2C15—C20—C21118.19 (17)
C4—C5—H5119.2C19—C20—C21123.80 (18)
C5—C6—C7120.6 (3)C22—C21—C26117.92 (18)
C5—C6—H6119.7C22—C21—C20123.54 (18)
C7—C6—H6119.7C26—C21—C20118.54 (17)
C2—C7—C6117.8 (2)C23—C22—C21121.0 (2)
C2—C7—C8118.03 (19)C23—C22—H22119.5
C6—C7—C8124.2 (2)C21—C22—H22119.5
C9—C8—C13117.5 (2)C22—C23—C24120.5 (2)
C9—C8—C7123.3 (2)C22—C23—H23119.8
C13—C8—C7119.14 (19)C24—C23—H23119.8
C10—C9—C8121.0 (2)C25—C24—C23120.2 (2)
C10—C9—H9119.5C25—C24—H24119.9
C8—C9—H9119.5C23—C24—H24119.9
C9—C10—C11120.9 (2)C24—C25—C26120.4 (2)
C9—C10—H10119.6C24—C25—H25119.8
C11—C10—H10119.6C26—C25—H25119.8
C12—C11—C10119.8 (2)C25—C26—N2118.43 (17)
C12—C11—H11120.1C25—C26—C21119.96 (18)
C10—C11—H11120.1N2—C26—C21121.61 (17)
N1—C1—C2—C3−177.0 (2)C18—C19—C20—C21179.9 (2)
N1—C1—C2—C70.5 (3)C15—C20—C21—C22176.71 (18)
C7—C2—C3—C41.3 (3)C19—C20—C21—C22−3.7 (3)
C1—C2—C3—C4178.7 (2)C15—C20—C21—C26−2.7 (3)
C2—C3—C4—C5−0.8 (4)C19—C20—C21—C26176.82 (19)
C3—C4—C5—C6−0.2 (4)C26—C21—C22—C23−0.8 (3)
C4—C5—C6—C70.8 (4)C20—C21—C22—C23179.8 (2)
C3—C2—C7—C6−0.7 (3)C21—C22—C23—C24−0.4 (3)
C1—C2—C7—C6−178.2 (2)C22—C23—C24—C250.8 (4)
C3—C2—C7—C8178.41 (19)C23—C24—C25—C260.0 (3)
C1—C2—C7—C80.9 (3)C24—C25—C26—N2178.40 (19)
C5—C6—C7—C2−0.4 (4)C24—C25—C26—C21−1.2 (3)
C5—C6—C7—C8−179.4 (2)C22—C21—C26—C251.5 (3)
C2—C7—C8—C9178.4 (2)C20—C21—C26—C25−179.01 (17)
C6—C7—C8—C9−2.5 (3)C22—C21—C26—N2−178.02 (17)
C2—C7—C8—C13−1.5 (3)C20—C21—C26—N21.4 (3)
C6—C7—C8—C13177.6 (2)C2—C1—N1—C13−1.3 (3)
C13—C8—C9—C10−0.4 (3)C2—C1—N1—Zn1168.86 (16)
C7—C8—C9—C10179.7 (2)C12—C13—N1—C1−179.80 (18)
C8—C9—C10—C11−0.3 (4)C8—C13—N1—C10.7 (3)
C9—C10—C11—C120.2 (4)C12—C13—N1—Zn110.7 (2)
C10—C11—C12—C130.8 (3)C8—C13—N1—Zn1−168.77 (14)
C11—C12—C13—N1179.0 (2)C15—C14—N2—C26−2.6 (3)
C11—C12—C13—C8−1.5 (3)C15—C14—N2—Zn1−177.82 (14)
C9—C8—C13—C121.3 (3)C25—C26—N2—C14−178.37 (18)
C7—C8—C13—C12−178.80 (18)C21—C26—N2—C141.2 (3)
C9—C8—C13—N1−179.20 (18)C25—C26—N2—Zn1−3.3 (2)
C7—C8—C13—N10.7 (3)C21—C26—N2—Zn1176.23 (13)
N2—C14—C15—C201.2 (3)C14—N2—Zn1—N1−15.81 (16)
N2—C14—C15—C16−177.53 (18)C26—N2—Zn1—N1169.13 (14)
C20—C15—C16—C17−0.4 (3)C14—N2—Zn1—Cl197.39 (14)
C14—C15—C16—C17178.30 (19)C26—N2—Zn1—Cl1−77.67 (14)
C15—C16—C17—C180.0 (3)C14—N2—Zn1—Cl2−133.03 (13)
C16—C17—C18—C190.2 (4)C26—N2—Zn1—Cl251.91 (15)
C17—C18—C19—C200.1 (3)C1—N1—Zn1—N2121.89 (15)
C16—C15—C20—C190.7 (3)C13—N1—Zn1—N2−68.46 (16)
C14—C15—C20—C19−178.05 (18)C1—N1—Zn1—Cl17.32 (16)
C16—C15—C20—C21−179.75 (17)C13—N1—Zn1—Cl1176.97 (14)
C14—C15—C20—C211.5 (3)C1—N1—Zn1—Cl2−116.83 (14)
C18—C19—C20—C15−0.6 (3)C13—N1—Zn1—Cl252.82 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.932.773.434 (3)129
C17—H17···Cg6i0.932.823.535 (3)134
C24—H24···Cg5ii0.932.813.508 (3)132

Symmetry codes: (i) −x, y−1/2, −z−1/2; (ii) x, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2696).

References

  • Ahmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266. [PMC free article] [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS, Madison, Wisconsin, USA.
  • Çelik, Ö., İde, S., Kurt, M. & Yurdakul, Ş. (2004). Acta Cryst. E60, m1134–m1136.
  • Cui, Y., Long, D., Chen, W. & Huang, J. (1998). Acta Cryst. C54, 1605–1607.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gruia, L. M., Rochon, F. D. & Beauchamp, A. L. (2007). Inorg. Chim. Acta, 360, 1825–1840.
  • Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212. [PMC free article] [PubMed]
  • Khan, M. A. & Tuck, D. G. (1984). Acta Cryst. C40, 60–62.
  • Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.
  • Kozhevnikov, D. N., Shabunina, O. V., Kopchuk, D. S., Slepukhin, P. A. & Kozhevnikov, V. N. (2006). Tetrahedron Lett.47, 7025–7029.
  • Liu, Q. D., Wang, R. & Wang, S. (2004). Dalton Trans. pp. 2073–2079. [PubMed]
  • Markowitz, B. M. E., Turnbull, M. M. & Awwadi, F. F. (2006). Acta Cryst. E62, m1278–m1280.
  • Musie, G. T., Li, X. & Powell, D. R. (2004). Acta Cryst. E60, m471–m472.
  • Preston, H. S. & Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1965–1968.
  • Reimann, C. W., Block, S. & Perloff, A. (1966). Inorg. Chem.5, 1185–1189.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shen, L., Li, M. C., Jin, Z. M., Hu, M. L. & Xuan, R. C. (2004). Acta Cryst. E60, m330–m331.
  • Steffen, W. L. & Palenik, G. J. (1977). Inorg. Chem.16, 1119–1127.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography