PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m707.
Published online 2009 June 6. doi:  10.1107/S1600536809020200
PMCID: PMC2969293

Aqua­azido­{2,2′-[o-phenylenebis(nitrilo­methyl­idyne)]diphenolato}manganese(III) hemihydrate

Abstract

In the title compound, [Mn(C20H14N2O2)(N3)(H2O)]·0.5H2O, the MnIII ion is chelated by the N,N′,O,O′-tetra­dentate Schiff base ligand and further coordinated by one azide ion and one water mol­ecule in trans positions, resulting in a distorted fac-MnN3O3 octa­hedral arrangement. The O atom of the uncoordinated water mol­ecule lies on a crystallographic twofold axis. In the crystal, O—H(...)O and O—H(...)N hydrogen bonds help to establish the packing.

Related literature

For background to salicylaldehyde complexes, see: Alam et al. (2003 [triangle]); Zelewsky & von Knof (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m707-scheme1.jpg

Experimental

Crystal data

  • [Mn(C20H14N2O2)(N3)(H2O)]·0.5H2O
  • M r = 438.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m707-efi1.jpg
  • a = 25.100 (10) Å
  • b = 11.478 (5) Å
  • c = 12.599 (5) Å
  • β = 94.175 (3)°
  • V = 3620 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.77 mm−1
  • T = 293 K
  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.914, T max = 0.941
  • 11927 measured reflections
  • 3162 independent reflections
  • 2371 reflections with I > 2σ(I)
  • R int = 0.082

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.086
  • S = 1.00
  • 3162 reflections
  • 280 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020200/hb2977sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020200/hb2977Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Ministry of Science and Technology of China (grant No. 2001CB6105–07) for support.

supplementary crystallographic information

Comment

The synthesis of complexes consisting of salicylaldehyde ligand has attracted continuous research interest not only because of their appealing structural and topological novelty, but also due to their unusual optical, electronic, magnetic, and catalytic properties, as well as their potential medical application (Alam et al., 2003; Zelewsky & von Knof, 1999). In the present paper, we describe the synthesis and structural characterizations of the title compound, (I),

As shown in Fig. 1, each Mn(III) atom is chelated by Schiff base ligand via two N and two O atoms and is additionally coordinated by one azide and a water molecule, forming a distorted octahedral geometry (Table 1) in which, the Schiff base lies in the equatorial plane, and the azide and aqua ligands lie in the axial coordination sites.

With O—H···O and O—H···N hydrogen bonds (Table 2), a three-dimensional network is formed as shown in Fig. 2.

Experimental

A mixture of manganese(III) acetylacetonate (1 mmol) and N,N'-bis(2-hydroxy-5-bromobenzyl)1,2-diaminopropane (1 mmol), and dipotassium nickel tetracyanide (1 mmol) in 20 ml methanol was refluxed for several hours. The above cooled solution was filtered and the filtrate was kept in an ice box. One week later, brown blocks of (I) were obtained with a yield of 5%. Anal. Calc. for C40H34Mn2N10O7: C 54.75, H 3.88, N 15.97%; Found: C 54.71, H 3.75, N 15.82.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(carrier). H atom on aqua were located from difference density maps and were refined with distance restraints of O–H = 0.82 (1) Å.

Figures

Fig. 1.
The molecular structure of (I), drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.
Fig. 2.
Three-dimensional network formed by hydrogen bonds (dashed lines).

Crystal data

[Mn(C20H14N2O2)(N3)(H2O)]·0.5H2OF(000) = 1808
Mr = 438.33Dx = 1.612 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 3162 reflections
a = 25.10 (1) Åθ = 3.0–25.0°
b = 11.478 (5) ŵ = 0.77 mm1
c = 12.599 (5) ÅT = 293 K
β = 94.175 (3)°Block, pink
V = 3620 (3) Å30.12 × 0.10 × 0.08 mm
Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer3162 independent reflections
Radiation source: fine-focus sealed tube2371 reflections with I > 2σ(I)
graphiteRint = 0.082
[var phi] and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −27→29
Tmin = 0.914, Tmax = 0.941k = −13→13
11927 measured reflectionsl = −14→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.03P)2] where P = (Fo2 + 2Fc2)/3
3162 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.32 e Å3
4 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.204685 (15)0.09791 (3)0.87813 (3)0.00903 (13)
C10.11631 (10)0.2543 (2)0.90445 (18)0.0102 (6)
C20.09780 (10)0.3688 (2)0.90882 (19)0.0124 (6)
H20.12190.43010.90610.015*
C30.04451 (10)0.3928 (2)0.91706 (19)0.0156 (6)
H30.03320.46990.91960.019*
C40.00719 (10)0.3029 (2)0.9217 (2)0.0180 (6)
H4−0.02880.31970.92600.022*
C50.02444 (10)0.1897 (2)0.9198 (2)0.0161 (6)
H5−0.00020.12970.92380.019*
C60.07880 (10)0.1623 (2)0.91183 (18)0.0110 (6)
C70.09346 (10)0.0426 (2)0.91314 (18)0.0114 (6)
H70.0662−0.01150.91880.014*
C80.15275 (10)−0.1198 (2)0.91053 (18)0.0092 (6)
C90.11626 (10)−0.2052 (2)0.93648 (19)0.0123 (6)
H90.0819−0.18440.95250.015*
C100.13142 (10)−0.3207 (2)0.93819 (18)0.0123 (6)
H100.1071−0.37770.95530.015*
C110.18272 (10)−0.3529 (2)0.91454 (18)0.0124 (6)
H110.1925−0.43110.91570.015*
C120.21902 (10)−0.2690 (2)0.88938 (18)0.0109 (6)
H120.2533−0.29060.87360.013*
C130.20450 (10)−0.1518 (2)0.88751 (18)0.0096 (5)
C140.28922 (10)−0.0719 (2)0.84750 (19)0.0110 (6)
H140.3007−0.14800.83850.013*
C150.32741 (10)0.0188 (2)0.83746 (18)0.0111 (6)
C160.38034 (10)−0.0164 (2)0.82023 (18)0.0145 (6)
H160.3878−0.09540.81430.017*
C170.42059 (10)0.0627 (2)0.81212 (19)0.0155 (6)
H170.45480.03770.79980.019*
C180.40976 (10)0.1809 (2)0.82255 (18)0.0142 (6)
H180.43710.23500.81810.017*
C190.35893 (10)0.2184 (2)0.83938 (19)0.0136 (6)
H190.35250.29780.84620.016*
C200.31675 (10)0.1395 (2)0.84649 (18)0.0094 (6)
N10.23943 (8)−0.05699 (18)0.86829 (15)0.0098 (5)
N20.14151 (8)0.00196 (18)0.90708 (15)0.0092 (5)
N30.17896 (8)0.07150 (19)0.70029 (16)0.0131 (5)
N40.13255 (9)0.05323 (19)0.67637 (16)0.0136 (5)
N50.08768 (9)0.0341 (2)0.65186 (17)0.0234 (6)
O10.16772 (7)0.23708 (15)0.89293 (13)0.0127 (4)
O20.26797 (6)0.18073 (15)0.85790 (12)0.0113 (4)
O1W0.23229 (7)0.08568 (17)1.05761 (13)0.0138 (4)
O2W0.0000−0.0960 (3)0.75000.0383 (8)
H1W0.2366 (10)0.1525 (7)1.0796 (16)0.023 (9)*
H2W0.2189 (11)0.0413 (15)1.0991 (14)0.037 (10)*
H3W0.0224 (11)−0.056 (3)0.723 (3)0.064 (13)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0082 (2)0.0069 (2)0.0122 (2)−0.00022 (17)0.00244 (16)−0.00015 (16)
C10.0133 (14)0.0136 (14)0.0037 (13)0.0011 (11)0.0004 (10)0.0013 (11)
C20.0163 (14)0.0085 (14)0.0124 (14)0.0000 (11)0.0008 (11)0.0017 (11)
C30.0190 (15)0.0117 (15)0.0162 (15)0.0046 (12)0.0017 (12)0.0029 (11)
C40.0105 (14)0.0172 (16)0.0271 (16)0.0050 (12)0.0059 (12)0.0031 (13)
C50.0130 (14)0.0117 (15)0.0239 (16)−0.0027 (11)0.0035 (12)0.0033 (12)
C60.0149 (14)0.0083 (14)0.0101 (14)0.0023 (11)0.0031 (11)0.0004 (11)
C70.0121 (14)0.0118 (15)0.0105 (14)−0.0045 (11)0.0024 (11)−0.0004 (11)
C80.0129 (14)0.0080 (14)0.0064 (13)−0.0001 (11)−0.0005 (10)−0.0019 (10)
C90.0119 (14)0.0114 (15)0.0138 (14)−0.0013 (11)0.0035 (11)−0.0016 (11)
C100.0159 (14)0.0119 (15)0.0092 (14)−0.0046 (11)0.0014 (11)0.0001 (11)
C110.0205 (15)0.0067 (14)0.0093 (13)0.0021 (11)−0.0028 (11)0.0002 (11)
C120.0129 (14)0.0145 (15)0.0052 (13)0.0043 (11)0.0005 (10)−0.0027 (10)
C130.0124 (14)0.0120 (14)0.0042 (13)−0.0028 (11)−0.0007 (10)−0.0015 (11)
C140.0142 (14)0.0106 (15)0.0082 (13)0.0035 (11)0.0011 (11)0.0006 (10)
C150.0128 (14)0.0144 (14)0.0062 (13)−0.0007 (11)0.0016 (10)0.0010 (11)
C160.0170 (15)0.0162 (15)0.0104 (14)0.0038 (12)0.0021 (11)0.0012 (11)
C170.0069 (14)0.0278 (17)0.0119 (14)0.0028 (12)0.0011 (11)0.0015 (12)
C180.0107 (14)0.0240 (17)0.0077 (14)−0.0048 (12)−0.0008 (11)0.0009 (12)
C190.0193 (15)0.0119 (15)0.0095 (14)−0.0023 (12)−0.0006 (11)−0.0023 (11)
C200.0082 (13)0.0175 (15)0.0026 (12)0.0006 (11)0.0005 (10)0.0020 (11)
N10.0135 (12)0.0086 (12)0.0073 (11)0.0005 (9)0.0014 (9)0.0004 (9)
N20.0118 (11)0.0070 (12)0.0088 (11)0.0010 (9)0.0018 (9)0.0002 (9)
N30.0097 (12)0.0190 (14)0.0108 (12)−0.0020 (9)0.0013 (9)0.0014 (9)
N40.0198 (14)0.0138 (13)0.0078 (12)0.0027 (10)0.0047 (10)0.0002 (9)
N50.0122 (13)0.0395 (17)0.0183 (13)0.0007 (12)−0.0002 (10)0.0000 (11)
O10.0099 (9)0.0074 (10)0.0213 (10)−0.0001 (7)0.0038 (7)−0.0005 (8)
O20.0114 (9)0.0097 (10)0.0133 (10)−0.0007 (8)0.0037 (7)0.0011 (8)
O1W0.0192 (11)0.0090 (11)0.0133 (10)−0.0039 (8)0.0027 (8)−0.0004 (9)
O2W0.025 (2)0.028 (2)0.063 (2)0.0000.0130 (18)0.000

Geometric parameters (Å, °)

Mn1—O11.8636 (18)C10—H100.9300
Mn1—O21.8844 (18)C11—C121.379 (3)
Mn1—N21.986 (2)C11—H110.9300
Mn1—N11.988 (2)C12—C131.393 (3)
Mn1—N32.306 (2)C12—H120.9300
Mn1—O1W2.321 (2)C13—N11.430 (3)
C1—O11.324 (3)C14—N11.307 (3)
C1—C21.397 (3)C14—C151.427 (3)
C1—C61.422 (3)C14—H140.9300
C2—C31.377 (3)C15—C201.418 (4)
C2—H20.9300C15—C161.420 (3)
C3—C41.398 (4)C16—C171.367 (4)
C3—H30.9300C16—H160.9300
C4—C51.371 (4)C17—C181.392 (4)
C4—H40.9300C17—H170.9300
C5—C61.411 (3)C18—C191.378 (3)
C5—H50.9300C18—H180.9300
C6—C71.422 (4)C19—C201.401 (3)
C7—N21.301 (3)C19—H190.9300
C7—H70.9300C20—O21.330 (3)
C8—C91.397 (3)N3—N41.200 (3)
C8—C131.401 (3)N4—N51.167 (3)
C8—N21.425 (3)O1W—H1W0.820 (11)
C9—C101.379 (4)O1W—H2W0.82 (2)
C9—H90.9300O2W—H3W0.82 (3)
C10—C111.393 (3)
O1—Mn1—O290.68 (8)C11—C10—H10119.7
O1—Mn1—N292.69 (8)C12—C11—C10120.0 (2)
O2—Mn1—N2175.37 (8)C12—C11—H11120.0
O1—Mn1—N1175.33 (8)C10—C11—H11120.0
O2—Mn1—N193.71 (8)C11—C12—C13120.1 (2)
N2—Mn1—N182.83 (9)C11—C12—H12119.9
O1—Mn1—N395.95 (8)C13—C12—H12119.9
O2—Mn1—N396.55 (7)C12—C13—C8119.7 (2)
N2—Mn1—N386.26 (8)C12—C13—N1125.1 (2)
N1—Mn1—N385.12 (8)C8—C13—N1115.1 (2)
O1—Mn1—O1W94.00 (7)N1—C14—C15125.5 (2)
O2—Mn1—O1W88.14 (7)N1—C14—H14117.2
N2—Mn1—O1W88.47 (7)C15—C14—H14117.2
N1—Mn1—O1W84.58 (7)C20—C15—C16118.3 (2)
N3—Mn1—O1W168.94 (7)C20—C15—C14125.0 (2)
O1—C1—C2118.3 (2)C16—C15—C14116.6 (2)
O1—C1—C6123.5 (2)C17—C16—C15121.8 (3)
C2—C1—C6118.2 (2)C17—C16—H16119.1
C3—C2—C1121.3 (2)C15—C16—H16119.1
C3—C2—H2119.4C16—C17—C18119.3 (2)
C1—C2—H2119.4C16—C17—H17120.3
C2—C3—C4120.9 (3)C18—C17—H17120.3
C2—C3—H3119.6C19—C18—C17120.6 (2)
C4—C3—H3119.6C19—C18—H18119.7
C5—C4—C3119.1 (2)C17—C18—H18119.7
C5—C4—H4120.5C18—C19—C20121.3 (3)
C3—C4—H4120.5C18—C19—H19119.3
C4—C5—C6121.4 (2)C20—C19—H19119.3
C4—C5—H5119.3O2—C20—C19118.9 (2)
C6—C5—H5119.3O2—C20—C15122.5 (2)
C5—C6—C1119.2 (2)C19—C20—C15118.6 (2)
C5—C6—C7117.7 (2)C14—N1—C13122.8 (2)
C1—C6—C7123.1 (2)C14—N1—Mn1124.04 (18)
N2—C7—C6125.9 (2)C13—N1—Mn1113.16 (16)
N2—C7—H7117.1C7—N2—C8122.2 (2)
C6—C7—H7117.1C7—N2—Mn1124.61 (18)
C9—C8—C13119.9 (2)C8—N2—Mn1112.96 (15)
C9—C8—N2124.3 (2)N4—N3—Mn1117.69 (16)
C13—C8—N2115.8 (2)N5—N4—N3178.8 (3)
C10—C9—C8119.6 (2)C1—O1—Mn1129.44 (16)
C10—C9—H9120.2C20—O2—Mn1128.82 (16)
C8—C9—H9120.2Mn1—O1W—H1W107.2 (17)
C9—C10—C11120.7 (2)Mn1—O1W—H2W123.5 (18)
C9—C10—H10119.7H1W—O1W—H2W114.6 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H2W···N3i0.82 (2)2.12 (2)2.937 (3)176 (3)
O1W—H1W···O2ii0.82 (1)2.08 (1)2.885 (3)169 (2)
O2W—H3W···N50.82 (3)2.18 (3)3.000 (3)173 (4)

Symmetry codes: (i) x, −y, z+1/2; (ii) −x+1/2, −y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2977).

References

  • Alam, M. A., Nethaji, M. & Ray, M. (2003). Angew. Chem. Int. Ed.42, 1940–1942. [PubMed]
  • Bruker (2004). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zelewsky, A. & von Knof, U. (1999). Angew. Chem. Int. Ed.38, 302–322.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography