PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1489.
Published online 2009 June 6. doi:  10.1107/S1600536809020650
PMCID: PMC2969289

2,2-Dibromo-1-(4-hydr­oxy-3-methoxy­phen­yl)ethanone

Abstract

The mol­ecule of the title compound, C9H8Br2O3, is stabilized by an intra­molecular O—H(...)O inter­action. Inter­molecular C—H(...)O inter­actions connect mol­ecules into a two-dimensional array in the bc plane; connections between these are afforded by π–π stacking inter­actions [centroid–centroid distance 3.596 (5) Å].

Related literature

For the beta-O-4 substructure in lignin, see: Cathala et al. (2003 [triangle]). For attempts to prepare well defined linear polymers with the β-O-4 structure and to develop new methods of utilizing lignins, see: Kishimoto et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1489-scheme1.jpg

Experimental

Crystal data

  • C9H8Br2O3
  • M r = 323.97
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1489-efi1.jpg
  • a = 7.0370 (14) Å
  • b = 10.805 (2) Å
  • c = 13.871 (3) Å
  • β = 98.80 (3)°
  • V = 1042.3 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 7.76 mm−1
  • T = 295 K
  • 0.10 × 0.05 × 0.05 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.511, T max = 0.698
  • 2060 measured reflections
  • 1900 independent reflections
  • 894 reflections with I > 2σ(I)
  • R int = 0.041
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.159
  • S = 0.96
  • 1900 reflections
  • 127 parameters
  • 61 restraints
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.65 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks qj0709, I. DOI: 10.1107/S1600536809020650/tk2463sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020650/tk2463Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2005B04) for support.

supplementary crystallographic information

Comment

Lignin is natural polymer occurring in plant cell walls and is considered to be the second most abundant biopolymer after cellulose. The beta-O-4 structure is the most abundant substructure in lignin (Cathala et al., 2003). In order to prepare well defined linear polymers composed of the β-O-4 structure and in attempt to develop new utilization methods of lignins (Kishimoto et al., 2005), a new compound, 2,2-dibromo-1-(4-hydroxy-3-methoxyphenyl)ethanone, (I), was synthesized and its structure determined using single-crystal X-ray methods.

The molecular conformation of (I), Fig. 1, is stabilized by an intramolecular O—H···O interaction formed between the hydroxyl-H and methoxy-O atoms (H···O = 2.27 Å). The molecules are connected into a 2-D array via C-H···O interactions in the bc-plane (Table 1). Connections between the layers are afforded by π-π stacking interactions, with the shortest centroid···centroid distance being 3.596 (5)Å.

Experimental

To a stirred solution of acetovanillone (5 g, 0.03 mol) in anhydrous CHCl3, bromine (3.1 ml, 0.06 mol) was added dropwise under nitrogen over 2 h at 273 K. The reaction mixture was kept at 273k for 1 h. The reaction mixture was diluted with ether and washed with ice-cold water and brine. The solution was dried over anhydrous Na2SO4 and concentrated to dryness in vacuo. The crude crystalline product was purified by column chromatography to obtain a pure white solid, (I). Colourless single crystals were grown by slow evaporation of an ethyl acetate solution of (I).

Refinement

H atoms were placed in calculated positions and treated using a riding model, with C—H = 0.93–0.98 Å and O—H = 0.85 Å, and with Uiso(H) = 1.2Ueq(C, O) or 1.5Ueq(C) for methyl-H atoms.

Figures

Fig. 1.
The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C9H8Br2O3F(000) = 624
Mr = 323.97Dx = 2.065 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.0370 (14) Åθ = 10–13°
b = 10.805 (2) ŵ = 7.76 mm1
c = 13.871 (3) ÅT = 295 K
β = 98.80 (3)°Needle, colourless
V = 1042.3 (4) Å30.10 × 0.05 × 0.05 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer894 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
graphiteθmax = 25.3°, θmin = 2.4°
ω/2θ scansh = 0→8
Absorption correction: ψ scan (North et al., 1968)k = 0→12
Tmin = 0.511, Tmax = 0.698l = −16→16
2060 measured reflections3 standard reflections every 200 reflections
1900 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 0.96w = 1/[σ2(Fo2) + (0.0723P)2] where P = (Fo2 + 2Fc2)/3
1900 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.56 e Å3
61 restraintsΔρmin = −0.65 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.08467 (19)0.97920 (12)0.38634 (8)0.0775 (5)
Br20.51183 (19)0.91674 (13)0.35768 (10)0.0890 (5)
O10.1990 (9)1.1174 (7)−0.1321 (4)0.0521 (17)
O20.2770 (9)0.8866 (7)−0.1677 (4)0.062 (2)
H2A0.25260.9407−0.21230.074*
O30.2364 (10)1.1382 (6)0.2363 (4)0.0578 (19)
C10.1731 (15)1.2472 (10)−0.1180 (7)0.065 (3)
H1A0.14081.2869−0.18020.097*
H1B0.29001.2820−0.08400.097*
H1C0.07121.2596−0.08020.097*
C20.2291 (13)1.0450 (8)−0.0514 (6)0.041 (2)
C30.2247 (12)1.0754 (8)0.0407 (5)0.036 (2)
H3A0.20021.15720.05540.043*
C40.2555 (12)0.9894 (8)0.1168 (5)0.0303 (19)
C50.2965 (12)0.8669 (8)0.0924 (5)0.037 (2)
H5A0.31980.80710.14100.045*
C60.3021 (13)0.8348 (9)−0.0047 (6)0.043 (2)
H6A0.32790.7536−0.02080.052*
C70.2714 (13)0.9187 (9)−0.0728 (6)0.044 (2)
C80.2469 (13)1.0318 (9)0.2175 (6)0.039 (2)
C90.2485 (13)0.9338 (9)0.2920 (6)0.048 (2)
H9A0.20460.85550.26060.057*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0952 (10)0.0694 (9)0.0809 (7)0.0149 (8)0.0546 (7)0.0129 (7)
Br20.0631 (8)0.0828 (11)0.1166 (10)0.0081 (8)−0.0004 (7)0.0338 (8)
O10.051 (4)0.059 (5)0.046 (3)−0.001 (4)0.008 (3)0.009 (3)
O20.065 (5)0.072 (5)0.055 (4)0.001 (4)0.030 (3)−0.003 (4)
O30.105 (6)0.018 (4)0.058 (4)0.001 (4)0.037 (4)−0.001 (3)
C10.072 (8)0.055 (8)0.068 (7)−0.007 (7)0.017 (6)0.020 (6)
C20.044 (5)0.035 (5)0.045 (4)−0.001 (4)0.009 (4)0.003 (4)
C30.041 (5)0.020 (4)0.048 (4)−0.006 (4)0.013 (4)0.000 (3)
C40.027 (4)0.024 (4)0.040 (3)−0.003 (4)0.006 (3)0.000 (3)
C50.038 (5)0.031 (4)0.041 (4)0.004 (4)−0.002 (4)0.001 (4)
C60.046 (5)0.034 (5)0.052 (4)0.000 (4)0.015 (4)−0.005 (4)
C70.046 (5)0.048 (5)0.045 (4)0.002 (5)0.025 (4)−0.005 (4)
C80.042 (5)0.025 (5)0.053 (4)0.004 (4)0.019 (4)0.001 (4)
C90.049 (5)0.033 (5)0.064 (5)−0.002 (5)0.015 (4)0.004 (4)

Geometric parameters (Å, °)

Br1—C91.935 (9)C2—C71.437 (12)
Br2—C91.945 (9)C3—C41.398 (10)
O1—C21.355 (10)C3—H3A0.9300
O1—C11.431 (12)C4—C51.407 (11)
O2—C71.369 (9)C4—C81.481 (11)
O2—H2A0.8500C5—C61.398 (11)
O3—C81.184 (10)C5—H5A0.9300
C1—H1A0.9600C6—C71.302 (11)
C1—H1B0.9600C6—H6A0.9300
C1—H1C0.9600C8—C91.478 (12)
C2—C31.324 (11)C9—H9A0.9800
C2—O1—C1117.4 (7)C6—C5—H5A119.9
C7—O2—H2A119.6C4—C5—H5A119.9
O1—C1—H1A109.5C7—C6—C5120.0 (9)
O1—C1—H1B109.5C7—C6—H6A120.0
H1A—C1—H1B109.5C5—C6—H6A120.0
O1—C1—H1C109.5C6—C7—O2119.7 (9)
H1A—C1—H1C109.5C6—C7—C2121.9 (8)
H1B—C1—H1C109.5O2—C7—C2118.4 (8)
C3—C2—O1129.0 (9)O3—C8—C9122.4 (8)
C3—C2—C7118.0 (8)O3—C8—C4121.4 (8)
O1—C2—C7112.9 (7)C9—C8—C4116.2 (8)
C2—C3—C4122.7 (8)C8—C9—Br1110.5 (6)
C2—C3—H3A118.7C8—C9—Br2107.5 (6)
C4—C3—H3A118.7Br1—C9—Br2109.3 (4)
C3—C4—C5117.2 (7)C8—C9—H9A109.8
C3—C4—C8118.9 (7)Br1—C9—H9A109.8
C5—C4—C8123.9 (7)Br2—C9—H9A109.8
C6—C5—C4120.1 (8)
C1—O1—C2—C35.5 (14)O1—C2—C7—C6−179.1 (8)
C1—O1—C2—C7−174.4 (8)C3—C2—C7—O2−179.7 (9)
O1—C2—C3—C4178.7 (8)O1—C2—C7—O20.2 (12)
C7—C2—C3—C4−1.3 (13)C3—C4—C8—O3−8.6 (13)
C2—C3—C4—C51.4 (13)C5—C4—C8—O3170.2 (9)
C2—C3—C4—C8−179.7 (9)C3—C4—C8—C9170.2 (8)
C3—C4—C5—C6−1.0 (12)C5—C4—C8—C9−10.9 (12)
C8—C4—C5—C6−179.8 (8)O3—C8—C9—Br135.2 (12)
C4—C5—C6—C70.7 (14)C4—C8—C9—Br1−143.6 (7)
C5—C6—C7—O2−179.9 (8)O3—C8—C9—Br2−84.0 (10)
C5—C6—C7—C2−0.7 (14)C4—C8—C9—Br297.2 (8)
C3—C2—C7—C61.0 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.852.272.617 (11)105
C1—H1A···O2i0.962.513.398 (11)153
C5—H5A···O3ii0.932.573.460 (10)161
C9—H9A···O3ii0.982.383.222 (11)143

Symmetry codes: (i) −x+1/2, y+1/2, −z−1/2; (ii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2463).

References

  • Cathala, B., Saake, B., Faix, O. & Monties, B. (2003). J. Chromatogr. A, 1020, 229–239. [PubMed]
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Kishimoto, T., Uraki, Y. & Ubukata, M. (2005). Org. Biomol. Chem.3, 1067–1073. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography