PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m787.
Published online 2009 June 17. doi:  10.1107/S1600536809021771
PMCID: PMC2969288

catena-Poly[[diaqua­nickel(II)]-μ-7-oxabicyclo­[2.2.1]heptane-2,3-di­carboxyl­ato]

Abstract

In the crystal structure of the title compound, [Ni(C8H8O5)(H2O)2]n, the NiII cation is in a Jahn–Teller-distorted octahedral coordination environment binding to two O atoms from water molecules, the bridging O atom of the bicycloheptane unit, two carboxylate O atoms from different carboxylate groups and one carboxylate O atom from a symmetry-related bridging ligand. The crystal structure is made up from layers propagating parallel to the bc plane.

Related literature

For the structure of the Cu(II) analogue, see: Wang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m787-scheme1.jpg

Experimental

Crystal data

  • [Ni(C8H8O5)(H2O)2]
  • M r = 278.89
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m787-efi1.jpg
  • a = 10.9145 (2) Å
  • b = 8.6281 (2) Å
  • c = 10.8581 (2) Å
  • β = 107.351 (1)°
  • V = 975.99 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.01 mm−1
  • T = 296 K
  • 0.27 × 0.20 × 0.10 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.618, T max = 0.817
  • 7972 measured reflections
  • 2213 independent reflections
  • 1961 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.059
  • S = 1.02
  • 2213 reflections
  • 157 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021771/at2793sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021771/at2793Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301) for financial support.

supplementary crystallographic information

Comment

The title compound, (I), is isostructural with the Cu(II) analogue (Wang et al., 2009). In the title compound, each NiII ion is six-coordinated by two oxygen atoms from water, one bridge oxygen, two carboxylate oxygen atoms in two different carboxylate groups and one carboxylate oxygen atom in another asymmetric unit. O1, O1W, O5 and O3 lie in the equatorial plane with the torsion angle -1.121 (47)°. O2W and carboxylate oxygen atom O4 are in the axial positions. The bond angle of O2W—Ni1—O4 is 177.144 (52)°, so it forms a distorted octahedral. Owing to the binding of the bridge oxygen atom with Ni, two six-membered rings(Ni1/O4/C8/C6/C5/O5 and Ni1/O3/C7/C1/C2/O5) are created. In addition, a seven-membered ring (Ni1/O3/C7/C1/C6/C8/O4) is formed because of the coordination of carboxylate oxygen atoms O3 and O4. What's more, intermolecular O—H···O hydrogen bonds of the complex make the crystal structure more stable (Table 1).

Experimental

A mixture of 1 mmol norcantharidin, 1 mmol NiCl2.6H2O and 15 mL distilled water was sealed in a 25 mL Teflon-lined stainless vessel and heated at 443 K for 3 d, then cooled slowly to room temperature. The solution was filtered and block green crystals were obtained.

Refinement

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model [C—H = 0.97-0.98 Å, Uiso(H) = 1.2Ueq(C)]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability.

Crystal data

[Ni(C8H8O5)(H2O)2]F(000) = 576
Mr = 278.89Dx = 1.898 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4375 reflections
a = 10.9145 (2) Åθ = 2.0–27.5°
b = 8.6281 (2) ŵ = 2.01 mm1
c = 10.8581 (2) ÅT = 296 K
β = 107.351 (1)°Block, green
V = 975.99 (3) Å30.27 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer2213 independent reflections
Radiation source: fine-focus sealed tube1961 reflections with I > 2σ(I)
graphiteRint = 0.019
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −13→14
Tmin = 0.618, Tmax = 0.817k = −11→6
7972 measured reflectionsl = −12→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.032P)2 + 0.4246P] where P = (Fo2 + 2Fc2)/3
2213 reflections(Δ/σ)max = 0.001
157 parametersΔρmax = 0.30 e Å3
6 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.73787 (15)−0.1019 (2)0.71021 (15)0.0214 (3)
H1A0.7710−0.20530.70050.026*
C20.75289 (16)0.0067 (2)0.60404 (16)0.0234 (3)
H2A0.68160.00080.52400.028*
C30.88388 (17)−0.0131 (2)0.58426 (19)0.0329 (4)
H3A0.88880.04020.50720.039*
H3B0.9048−0.12160.57890.039*
C40.97214 (18)0.0632 (3)0.7078 (2)0.0375 (5)
H4A1.0324−0.01100.75990.045*
H4B1.01920.14980.68720.045*
C50.87589 (15)0.1175 (2)0.77610 (17)0.0265 (4)
H5A0.90730.20340.83630.032*
C60.82547 (16)−0.0207 (2)0.83620 (16)0.0234 (3)
H6A0.8966−0.08910.88050.028*
C70.59962 (14)−0.1119 (2)0.71114 (15)0.0202 (3)
C80.75095 (16)0.0292 (2)0.92900 (15)0.0242 (4)
O1W0.69190 (12)0.44064 (15)0.74994 (13)0.0289 (3)
H1WA0.711 (2)0.473 (3)0.6846 (18)0.043*
H1WB0.643 (2)0.505 (2)0.765 (2)0.043*
O10.56501 (12)−0.23749 (14)0.74852 (12)0.0244 (3)
O2W0.51314 (14)0.29376 (19)0.53124 (13)0.0383 (3)
H2WA0.557 (2)0.322 (3)0.486 (2)0.057*
H2WB0.4472 (17)0.342 (3)0.512 (2)0.057*
O20.75780 (15)−0.05131 (17)1.02529 (12)0.0389 (3)
O30.52811 (11)0.00446 (14)0.67765 (13)0.0272 (3)
O40.68270 (12)0.15134 (16)0.89954 (11)0.0302 (3)
O50.76514 (11)0.15762 (14)0.66735 (11)0.0236 (3)
Ni10.601796 (19)0.22532 (2)0.714683 (19)0.01937 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0213 (8)0.0212 (8)0.0245 (8)0.0010 (6)0.0109 (6)−0.0017 (6)
C20.0216 (8)0.0296 (9)0.0221 (8)−0.0007 (7)0.0111 (6)−0.0032 (7)
C30.0287 (9)0.0413 (11)0.0364 (10)0.0019 (8)0.0217 (8)−0.0008 (8)
C40.0218 (9)0.0503 (13)0.0452 (11)−0.0038 (8)0.0172 (8)0.0003 (10)
C50.0196 (8)0.0318 (10)0.0285 (9)−0.0051 (7)0.0080 (7)−0.0037 (7)
C60.0194 (7)0.0285 (9)0.0225 (8)0.0031 (7)0.0066 (6)0.0014 (7)
C70.0218 (8)0.0217 (8)0.0194 (8)−0.0035 (6)0.0098 (6)−0.0058 (6)
C80.0240 (8)0.0299 (9)0.0181 (8)−0.0004 (7)0.0053 (6)−0.0013 (7)
O1W0.0290 (7)0.0249 (7)0.0357 (7)0.0008 (5)0.0145 (6)−0.0014 (5)
O10.0236 (6)0.0228 (6)0.0306 (6)−0.0026 (5)0.0138 (5)0.0003 (5)
O2W0.0377 (8)0.0566 (10)0.0238 (7)0.0112 (7)0.0144 (6)0.0103 (6)
O20.0555 (9)0.0399 (8)0.0258 (7)0.0123 (7)0.0187 (6)0.0097 (6)
O30.0220 (6)0.0209 (6)0.0421 (7)−0.0007 (5)0.0145 (5)−0.0011 (5)
O40.0364 (7)0.0357 (8)0.0218 (6)0.0119 (6)0.0137 (5)0.0046 (5)
O50.0234 (6)0.0249 (6)0.0254 (6)0.0001 (5)0.0118 (5)0.0019 (5)
Ni10.02056 (12)0.02009 (13)0.01992 (12)0.00083 (8)0.00979 (9)0.00170 (8)

Geometric parameters (Å, °)

C1—C71.514 (2)C6—H6A0.9800
C1—C21.532 (2)C7—O11.254 (2)
C1—C61.580 (2)C7—O31.257 (2)
C1—H1A0.9800C8—O21.239 (2)
C2—O51.460 (2)C8—O41.275 (2)
C2—C31.517 (2)O1W—Ni12.0834 (13)
C2—H2A0.9800O1W—H1WA0.841 (15)
C3—C41.546 (3)O1W—H1WB0.822 (15)
C3—H3A0.9700O1—Ni1i2.0027 (12)
C3—H3B0.9700O2W—Ni12.0255 (13)
C4—C51.529 (2)O2W—H2WA0.824 (16)
C4—H4A0.9700O2W—H2WB0.802 (16)
C4—H4B0.9700O3—Ni12.0608 (12)
C5—O51.457 (2)O4—Ni12.0393 (12)
C5—C61.538 (2)O5—Ni12.0809 (11)
C5—H5A0.9800Ni1—O1ii2.0027 (12)
C6—C81.533 (2)
C7—C1—C2111.72 (13)C1—C6—H6A110.1
C7—C1—C6111.48 (13)O1—C7—O3124.24 (14)
C2—C1—C6101.96 (13)O1—C7—C1116.61 (15)
C7—C1—H1A110.5O3—C7—C1119.13 (15)
C2—C1—H1A110.5O2—C8—O4123.98 (16)
C6—C1—H1A110.5O2—C8—C6119.16 (16)
O5—C2—C3102.07 (14)O4—C8—C6116.85 (14)
O5—C2—C1101.93 (12)Ni1—O1W—H1WA110.9 (17)
C3—C2—C1110.77 (14)Ni1—O1W—H1WB109.8 (17)
O5—C2—H2A113.6H1WA—O1W—H1WB106.5 (19)
C3—C2—H2A113.6C7—O1—Ni1i125.62 (11)
C1—C2—H2A113.6Ni1—O2W—H2WA119.0 (17)
C2—C3—C4101.47 (14)Ni1—O2W—H2WB122.3 (17)
C2—C3—H3A111.5H2WA—O2W—H2WB109 (2)
C4—C3—H3A111.5C7—O3—Ni1120.63 (11)
C2—C3—H3B111.5C8—O4—Ni1123.69 (11)
C4—C3—H3B111.5C5—O5—C296.15 (13)
H3A—C3—H3B109.3C5—O5—Ni1115.54 (9)
C5—C4—C3102.17 (14)C2—O5—Ni1113.69 (9)
C5—C4—H4A111.3O1ii—Ni1—O2W87.33 (6)
C3—C4—H4A111.3O1ii—Ni1—O490.36 (5)
C5—C4—H4B111.3O2W—Ni1—O4177.14 (6)
C3—C4—H4B111.3O1ii—Ni1—O382.07 (5)
H4A—C4—H4B109.2O2W—Ni1—O391.92 (6)
O5—C5—C4101.75 (14)O4—Ni1—O386.09 (5)
O5—C5—C6102.27 (13)O1ii—Ni1—O5172.30 (5)
C4—C5—C6110.67 (16)O2W—Ni1—O591.84 (5)
O5—C5—H5A113.7O4—Ni1—O590.22 (5)
C4—C5—H5A113.7O3—Ni1—O590.31 (5)
C6—C5—H5A113.7O1ii—Ni1—O1W103.17 (5)
C8—C6—C5112.87 (15)O2W—Ni1—O1W88.95 (6)
C8—C6—C1113.00 (13)O4—Ni1—O1W93.22 (5)
C5—C6—C1100.21 (13)O3—Ni1—O1W174.73 (5)
C8—C6—H6A110.1O5—Ni1—O1W84.46 (5)
C5—C6—H6A110.1
C7—C1—C2—O585.11 (15)C6—C8—O4—Ni128.8 (2)
C6—C1—C2—O5−34.06 (14)C4—C5—O5—C256.04 (15)
C7—C1—C2—C3−166.92 (14)C6—C5—O5—C2−58.43 (14)
C6—C1—C2—C373.92 (16)C4—C5—O5—Ni1176.00 (11)
O5—C2—C3—C435.96 (17)C6—C5—O5—Ni161.53 (14)
C1—C2—C3—C4−71.93 (18)C3—C2—O5—C5−57.44 (14)
C2—C3—C4—C5−1.3 (2)C1—C2—O5—C557.12 (13)
C3—C4—C5—O5−33.65 (19)C3—C2—O5—Ni1−178.84 (10)
C3—C4—C5—C674.44 (18)C1—C2—O5—Ni1−64.27 (13)
O5—C5—C6—C8−84.19 (16)C8—O4—Ni1—O1ii133.87 (14)
C4—C5—C6—C8168.06 (15)C8—O4—Ni1—O2W97.8 (11)
O5—C5—C6—C136.27 (15)C8—O4—Ni1—O351.85 (14)
C4—C5—C6—C1−71.48 (16)C8—O4—Ni1—O5−38.45 (14)
C7—C1—C6—C8−0.2 (2)C8—O4—Ni1—O1W−122.91 (14)
C2—C1—C6—C8119.17 (15)C7—O3—Ni1—O1ii−141.13 (13)
C7—C1—C6—C5−120.54 (14)C7—O3—Ni1—O2W131.83 (12)
C2—C1—C6—C5−1.20 (15)C7—O3—Ni1—O4−50.22 (12)
C2—C1—C7—O1149.60 (15)C7—O3—Ni1—O539.98 (12)
C6—C1—C7—O1−97.04 (17)C7—O3—Ni1—O1W32.4 (6)
C2—C1—C7—O3−31.8 (2)C5—O5—Ni1—O1ii−105.7 (4)
C6—C1—C7—O381.59 (18)C2—O5—Ni1—O1ii4.1 (4)
C5—C6—C8—O2−145.66 (17)C5—O5—Ni1—O2W170.59 (12)
C1—C6—C8—O2101.50 (19)C2—O5—Ni1—O2W−79.56 (11)
C5—C6—C8—O435.8 (2)C5—O5—Ni1—O4−11.38 (12)
C1—C6—C8—O4−77.0 (2)C2—O5—Ni1—O498.46 (11)
O3—C7—O1—Ni1i−8.3 (2)C5—O5—Ni1—O3−97.47 (11)
C1—C7—O1—Ni1i170.29 (10)C2—O5—Ni1—O312.37 (10)
O1—C7—O3—Ni1145.58 (13)C5—O5—Ni1—O1W81.83 (12)
C1—C7—O3—Ni1−32.95 (18)C2—O5—Ni1—O1W−168.33 (11)
O2—C8—O4—Ni1−149.69 (15)

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, y+1/2, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2iii0.84 (2)2.06 (2)2.9027 (19)180 (3)
O1W—H1WB···O3ii0.82 (2)2.13 (2)2.7953 (17)137 (2)
O1W—H1WB···O1iv0.82 (2)2.37 (2)3.1013 (17)149 (2)
O2W—H2WA···O4iii0.82 (2)1.89 (2)2.6967 (19)167 (3)
O2W—H2WB···O2ii0.80 (2)2.34 (2)3.135 (2)170 (2)

Symmetry codes: (iii) x, −y+1/2, z−1/2; (ii) −x+1, y+1/2, −z+3/2; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2793).

References

  • Bruker (2006). SAINT and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Y.-Y., Hu, R.-D. & Wang, Y.-J. (2009). Acta Cryst. E65, m169. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography