PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1529.
Published online 2009 June 10. doi:  10.1107/S1600536809021229
PMCID: PMC2969287

N-(2,3-Dimethyl­phen­yl)-2,2,2-trimethyl­acetamide

Abstract

The N—H bond in the title compound, C13H19NO, is anti to the C=O bond and is also anti to both the 2- and 3-methyl substituents in the aromatic ring. In the crystal, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into chains propagating along the c axis.

Related literature

For the preparation of the title compound, see: Shilpa & Gowda (2007 [triangle]). For related structures, see: Gowda et al. (2007a [triangle],b [triangle],c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1529-scheme1.jpg

Experimental

Crystal data

  • C13H19NO
  • M r = 205.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1529-efi1.jpg
  • a = 18.276 (4) Å
  • b = 8.227 (2) Å
  • c = 8.633 (2) Å
  • β = 97.94 (2)°
  • V = 1285.6 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 299 K
  • 0.45 × 0.16 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.971, T max = 0.992
  • 4295 measured reflections
  • 2349 independent reflections
  • 1214 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.073
  • wR(F 2) = 0.221
  • S = 0.96
  • 2349 reflections
  • 195 parameters
  • 112 restraints
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2004 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021229/ci2806sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021229/ci2806Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for resumption of his research fellowship.

supplementary crystallographic information

Comment

As part of a study of the effect of ring and side chain substitutions on the crystal structures of chemically and biologically important class of compounds such as aromatic amides (Gowda et al., 2007a, b, c), the crystal structure of 2,2,2-trimethyl-N-(2,3-dimethylphenyl)-acetamide has been determined.

The conformation of the N–H bond in the title compound is anti to both the 2- and 3-methyl substituents in the aromatic ring (Fig. 1), in contrast to the syn conformation observed with respect to both the 2- and 3-chloro substituents in 2,2,2-trimethyl-N-(2,3-dichlorophenyl)acetamide (Gowda et al., 2007a), syn conformation with respect to the 2-methyl substituent in 2,2,2-trimethyl-N- (2-methylphenyl)acetamide (Gowda et al., 2007b) and anti conformation with respect to 3-methyl substituent in 2,2,2-trimethyl-N- (3-methylphenyl)acetamide (Gowda et al., 2007c). Furthermore, the conformation of the C═O bond is anti to the N—H bond in the amide segment.

In the title compound, the molecules are linked into chains (Fig. 2) running along the c axis by intermolecular N—H···O hydrogen bonds (Table 1).

Experimental

The title compound was prepared according to the literature method (Shilpa & Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa & Gowda, 2007). Single crystals of the title compound were grown by slow evaporation of its ethanolic solution at room temperature.

Refinement

The tert-butyl group is disordered over three orientations with occupancies of 0.743 (14), 0.153 (7) and 0.104 (13). All C—C/C···C distances involving disordered atoms were restrained to be equal and also they were subjected to a rigid bond restraint. The Uij components of the disordered atoms were restrained to approximate isotropic behaviour. The N-bound H atom was located in a difference map and was allowed to ride on the N atom. The remaining H atoms were positioned geometrically and refined using a riding model [C-H = 0.93–0.96 Å]. The Uiso parameter for all H atoms were set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. All disorder components are shown.
Fig. 2.
Molecular packing of the title compound, viewed down the b axis. Only the major disorder component is shown. Hydrogen bonds are shown as dashed lines.

Crystal data

C13H19NOF(000) = 448
Mr = 205.29Dx = 1.061 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1033 reflections
a = 18.276 (4) Åθ = 2.7–27.9°
b = 8.227 (2) ŵ = 0.07 mm1
c = 8.633 (2) ÅT = 299 K
β = 97.94 (2)°Needle, colourless
V = 1285.6 (5) Å30.45 × 0.16 × 0.08 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector2349 independent reflections
Radiation source: fine-focus sealed tube1214 reflections with I > 2σ(I)
graphiteRint = 0.047
Rotation method data acquisition using ω and [var phi] scansθmax = 25.4°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)h = −17→21
Tmin = 0.971, Tmax = 0.992k = −6→9
4295 measured reflectionsl = −10→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221H-atom parameters constrained
S = 0.96w = 1/[σ2(Fo2) + (0.1311P)2] where P = (Fo2 + 2Fc2)/3
2349 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.28 e Å3
112 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.19392 (11)0.0929 (2)0.5063 (2)0.0698 (7)
N10.23113 (12)0.2060 (3)0.2915 (2)0.0563 (7)
H1N0.22390.23560.18500.068*
C10.28809 (14)0.3034 (3)0.3784 (3)0.0502 (7)
C20.34834 (14)0.2312 (3)0.4711 (3)0.0519 (7)
C30.40102 (15)0.3326 (4)0.5567 (3)0.0618 (8)
C40.39304 (17)0.4983 (4)0.5429 (3)0.0733 (9)
H40.42780.56520.60020.088*
C50.33513 (19)0.5685 (4)0.4467 (4)0.0789 (10)
H50.33200.68090.43690.095*
C60.28169 (17)0.4699 (3)0.3649 (3)0.0652 (8)
H60.24180.51570.30120.078*
C70.18685 (15)0.1087 (3)0.3635 (3)0.0533 (7)
C80.12776 (15)0.0097 (3)0.2593 (3)0.0636 (8)
C90.1112 (4)0.0650 (10)0.0899 (5)0.086 (2)0.743 (14)
H9A0.08650.16820.08530.128*0.743 (14)
H9B0.0801−0.01360.03090.128*0.743 (14)
H9C0.15660.07520.04650.128*0.743 (14)
C100.0569 (3)0.0106 (12)0.3340 (8)0.100 (3)0.743 (14)
H10A0.03910.12010.33850.150*0.743 (14)
H10B0.0667−0.03290.43800.150*0.743 (14)
H10C0.0202−0.05480.27270.150*0.743 (14)
C110.1582 (4)−0.1659 (6)0.2620 (10)0.101 (3)0.743 (14)
H11A0.2051−0.16610.22420.151*0.743 (14)
H11B0.1242−0.23380.19640.151*0.743 (14)
H11C0.1640−0.20660.36720.151*0.743 (14)
C9A0.1107 (14)−0.144 (2)0.347 (3)0.091 (7)0.153 (7)
H9D0.0780−0.11770.42150.136*0.153 (7)
H9E0.1558−0.18810.40120.136*0.153 (7)
H9F0.0877−0.22280.27420.136*0.153 (7)
C10A0.1509 (13)−0.029 (3)0.0996 (17)0.082 (7)0.153 (7)
H10D0.13420.05660.02730.122*0.153 (7)
H10E0.1293−0.12990.06180.122*0.153 (7)
H10F0.2038−0.03660.10960.122*0.153 (7)
C11A0.0616 (9)0.129 (2)0.242 (3)0.082 (6)0.153 (7)
H11D0.07910.23750.22950.124*0.153 (7)
H11E0.03740.12350.33360.124*0.153 (7)
H11F0.02740.09960.15170.124*0.153 (7)
C9B0.072 (2)−0.059 (7)0.360 (6)0.085 (11)0.104 (13)
H9G0.04400.02910.39570.128*0.104 (13)
H9H0.0978−0.11520.44800.128*0.104 (13)
H9I0.0391−0.13240.29830.128*0.104 (13)
C11B0.089 (3)0.128 (6)0.138 (7)0.111 (19)0.104 (13)
H11G0.08420.23240.18550.167*0.104 (13)
H11H0.04060.08730.09870.167*0.104 (13)
H11I0.11730.13920.05280.167*0.104 (13)
C10B0.173 (2)−0.115 (6)0.180 (7)0.095 (11)0.104 (13)
H10G0.1773−0.07900.07530.142*0.104 (13)
H10H0.1490−0.21850.17560.142*0.104 (13)
H10I0.2216−0.12420.23830.142*0.104 (13)
C120.35791 (18)0.0495 (4)0.4751 (4)0.0746 (9)
H12A0.33050.00270.38300.112*
H12B0.34010.00650.56620.112*
H12C0.40930.02340.47850.112*
C130.46617 (16)0.2627 (5)0.6612 (4)0.0859 (11)
H13A0.49760.20620.59870.129*
H13B0.44900.18830.73400.129*
H13C0.49350.34900.71750.129*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0848 (15)0.0745 (15)0.0504 (12)−0.0125 (11)0.0108 (9)0.0006 (10)
N10.0721 (15)0.0500 (14)0.0461 (12)−0.0083 (12)0.0054 (10)0.0016 (10)
C10.0617 (17)0.0420 (16)0.0468 (13)−0.0051 (12)0.0073 (12)−0.0018 (12)
C20.0576 (16)0.0471 (17)0.0527 (14)0.0025 (13)0.0132 (12)0.0018 (12)
C30.0570 (17)0.071 (2)0.0577 (16)−0.0049 (15)0.0082 (13)0.0023 (15)
C40.074 (2)0.069 (2)0.073 (2)−0.0191 (17)−0.0008 (16)−0.0073 (16)
C50.104 (3)0.0400 (18)0.089 (2)−0.0114 (17)0.001 (2)−0.0069 (16)
C60.076 (2)0.0459 (18)0.0706 (18)0.0028 (15)−0.0011 (15)0.0033 (14)
C70.0631 (17)0.0461 (17)0.0515 (16)0.0017 (13)0.0104 (12)0.0003 (12)
C80.0728 (19)0.0537 (18)0.0629 (18)−0.0116 (14)0.0046 (14)−0.0043 (14)
C90.085 (4)0.100 (5)0.064 (3)−0.027 (3)−0.013 (3)−0.001 (3)
C100.081 (3)0.122 (6)0.098 (4)−0.030 (4)0.016 (3)−0.010 (4)
C110.135 (5)0.051 (3)0.111 (5)−0.012 (3)−0.004 (4)−0.017 (3)
C9A0.095 (11)0.080 (9)0.101 (10)−0.016 (8)0.024 (8)0.008 (8)
C10A0.085 (10)0.085 (11)0.073 (8)−0.005 (8)0.006 (7)−0.008 (8)
C11A0.076 (9)0.085 (9)0.083 (10)−0.004 (7)0.000 (7)−0.011 (8)
C9B0.084 (13)0.082 (15)0.092 (13)−0.006 (9)0.018 (9)0.011 (9)
C11B0.11 (2)0.12 (2)0.11 (2)−0.002 (10)0.008 (10)−0.005 (10)
C10B0.103 (13)0.092 (14)0.092 (14)−0.008 (9)0.020 (9)−0.013 (10)
C120.082 (2)0.061 (2)0.082 (2)0.0128 (16)0.0142 (17)0.0059 (16)
C130.065 (2)0.110 (3)0.081 (2)−0.001 (2)0.0016 (16)0.006 (2)

Geometric parameters (Å, °)

O1—C71.229 (3)C10—H10B0.96
N1—C71.350 (3)C10—H10C0.96
N1—C11.440 (3)C11—H11A0.96
N1—H1N0.94C11—H11B0.96
C1—C61.378 (4)C11—H11C0.96
C1—C21.401 (3)C9A—H9D0.96
C2—C31.405 (4)C9A—H9E0.96
C2—C121.505 (4)C9A—H9F0.96
C3—C41.374 (4)C10A—H10D0.96
C3—C131.505 (4)C10A—H10E0.96
C4—C51.378 (4)C10A—H10F0.96
C4—H40.93C11A—H11D0.96
C5—C61.386 (4)C11A—H11E0.96
C5—H50.93C11A—H11F0.96
C6—H60.93C9B—H9G0.96
C7—C81.539 (4)C9B—H9H0.96
C8—C91.522 (4)C9B—H9I0.96
C8—C101.525 (5)C11B—H11G0.96
C8—C9A1.529 (8)C11B—H11H0.96
C8—C10A1.530 (8)C11B—H11I0.96
C8—C9B1.533 (8)C10B—H10G0.96
C8—C11B1.534 (8)C10B—H10H0.96
C8—C10B1.539 (8)C10B—H10I0.96
C8—C111.547 (5)C12—H12A0.96
C8—C11A1.547 (8)C12—H12B0.96
C9—H9A0.96C12—H12C0.96
C9—H9B0.96C13—H13A0.96
C9—H9C0.96C13—H13B0.96
C10—H10A0.96C13—H13C0.96
C7—N1—C1121.8 (2)C8—C11—H11B109.5
C7—N1—H1N126.2H11A—C11—H11B109.5
C1—N1—H1N111.0C8—C11—H11C109.5
C6—C1—C2121.4 (2)H11A—C11—H11C109.5
C6—C1—N1117.5 (2)H11B—C11—H11C109.5
C2—C1—N1121.1 (2)C8—C9A—H9D109.5
C1—C2—C3118.4 (2)C8—C9A—H9E109.5
C1—C2—C12120.9 (2)H9D—C9A—H9E109.5
C3—C2—C12120.6 (3)C8—C9A—H9F109.5
C4—C3—C2119.1 (3)H9D—C9A—H9F109.5
C4—C3—C13119.8 (3)H9E—C9A—H9F109.5
C2—C3—C13121.1 (3)C8—C10A—H10D109.5
C3—C4—C5122.1 (3)C8—C10A—H10E109.5
C3—C4—H4119.0H10D—C10A—H10E109.5
C5—C4—H4119.0C8—C10A—H10F109.5
C4—C5—C6119.4 (3)H10D—C10A—H10F109.5
C4—C5—H5120.3H10E—C10A—H10F109.5
C6—C5—H5120.3C8—C11A—H11D109.5
C1—C6—C5119.5 (3)C8—C11A—H11E109.5
C1—C6—H6120.2H11D—C11A—H11E109.5
C5—C6—H6120.2C8—C11A—H11F109.5
O1—C7—N1122.6 (2)H11D—C11A—H11F109.5
O1—C7—C8119.9 (2)H11E—C11A—H11F109.5
N1—C7—C8117.5 (2)C8—C9B—H9G109.5
C9—C8—C10109.7 (3)C8—C9B—H9H109.5
C9A—C8—C10A112.2 (7)H9G—C9B—H9H109.5
C9B—C8—C11B110 (3)C8—C9B—H9I109.5
C9B—C8—C10B117 (3)H9G—C9B—H9I109.5
C11B—C8—C10B110 (3)H9H—C9B—H9I109.5
C9—C8—C7115.7 (3)C8—C11B—H11G109.5
C10—C8—C7108.6 (3)C8—C11B—H11H109.5
C9A—C8—C7108.8 (10)H11G—C11B—H11H109.5
C10A—C8—C7112.1 (9)C8—C11B—H11I109.5
C9B—C8—C7109 (2)H11G—C11B—H11I109.5
C11B—C8—C7107 (2)H11H—C11B—H11I109.5
C10B—C8—C7103.6 (16)C8—C10B—H10G109.5
C9—C8—C11108.5 (3)C8—C10B—H10H109.5
C10—C8—C11108.8 (3)H10G—C10B—H10H109.5
C7—C8—C11105.3 (3)C8—C10B—H10I109.5
C9A—C8—C11A111.3 (7)H10G—C10B—H10I109.5
C10A—C8—C11A110.6 (7)H10H—C10B—H10I109.5
C8—C9—H9A109.5C2—C12—H12A109.5
C8—C9—H9B109.5C2—C12—H12B109.5
H9A—C9—H9B109.5H12A—C12—H12B109.5
C8—C9—H9C109.5C2—C12—H12C109.5
H9A—C9—H9C109.5H12A—C12—H12C109.5
H9B—C9—H9C109.5H12B—C12—H12C109.5
C8—C10—H10A109.5C3—C13—H13A109.5
C8—C10—H10B109.5C3—C13—H13B109.5
H10A—C10—H10B109.5H13A—C13—H13B109.5
C8—C10—H10C109.5C3—C13—H13C109.5
H10A—C10—H10C109.5H13A—C13—H13C109.5
H10B—C10—H10C109.5H13B—C13—H13C109.5
C8—C11—H11A109.5
C7—N1—C1—C6−116.5 (3)O1—C7—C8—C9166.5 (5)
C7—N1—C1—C264.6 (3)N1—C7—C8—C9−16.0 (5)
C6—C1—C2—C32.9 (4)O1—C7—C8—C1042.6 (5)
N1—C1—C2—C3−178.2 (2)N1—C7—C8—C10−139.9 (5)
C6—C1—C2—C12−175.1 (2)O1—C7—C8—C9A−24.7 (11)
N1—C1—C2—C123.8 (4)N1—C7—C8—C9A152.8 (11)
C1—C2—C3—C4−2.1 (4)O1—C7—C8—C10A−149.4 (11)
C12—C2—C3—C4176.0 (3)N1—C7—C8—C10A28.1 (11)
C1—C2—C3—C13178.7 (2)O1—C7—C8—C9B16 (2)
C12—C2—C3—C13−3.3 (4)N1—C7—C8—C9B−166 (2)
C2—C3—C4—C5−0.4 (5)O1—C7—C8—C11B135 (3)
C13—C3—C4—C5178.9 (3)N1—C7—C8—C11B−48 (3)
C3—C4—C5—C62.1 (5)O1—C7—C8—C10B−109 (3)
C2—C1—C6—C5−1.2 (4)N1—C7—C8—C10B69 (3)
N1—C1—C6—C5179.8 (3)O1—C7—C8—C11−73.8 (5)
C4—C5—C6—C1−1.3 (5)N1—C7—C8—C11103.7 (5)
C1—N1—C7—O1−2.5 (4)O1—C7—C8—C11A92.6 (11)
C1—N1—C7—C8−180.0 (2)N1—C7—C8—C11A−89.9 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.942.112.966 (3)151

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2806).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o3788.
  • Gowda, B. T., Kozisek, J., Tokarčík, M. & Fuess, H. (2007b). Acta Cryst. E63, o1983–o1984.
  • Gowda, B. T., Kozisek, J., Tokarčík, M. & Fuess, H. (2007c). Acta Cryst. E63, o2073–o2074.
  • Oxford Diffraction (2004). CrysAlis CCD Oxford Diffraction Ltd, Köln, Germany.
  • Oxford Diffraction (2007). CrysAlis RED Oxford Diffraction Ltd, Köln, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography