PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m842–m843.
Published online 2009 June 27. doi:  10.1107/S1600536809023824
PMCID: PMC2969284

Chlorido[(E)-2-hydr­oxy-6-(isonicotinoyl­hydrazonometh­yl)phen­yl]mercury(II) monohydrate

Abstract

The asymmetric unit of the title compound, [Hg(C13H10N3O2)Cl]·H2O, contains two independent mercury(II) complexes with slightly different conformations, related via a pseudo-inversion centre, and two water mol­ecules. The HgII atoms show a typical linear geometry to a C atom of the benzene ring and to a Cl atom. A benzene C and the azomethine N atom chelate the HgII atoms with weak intra­molecular Hg(...)N bonding distances of 2.735 (3) and 2.739 (3) Å, respectively. The resulting five-membered metallacycles are nearly coplanar with the benzene rings [dihedral angles = 0.9 (1) and 0.7 (1)°], while the pyridine rings make dihedral angles with the benzene units of 58.17 (1) and 56.58 (1)°. In the crystal structure, the HgII complexes are linked by hydr­oxy donor and pyridine acceptor groups into chains along [010]. The water mol­ecules connect the complexes through inter­molecular O—H(...)Ocarbon­yl bonds in the a-axis direction, and the azomethine H atoms donate towards the water O atoms, forming a three-dimensional network of inter­molecular O—H(...)N, O—H(...)O and N—H(...)O hydrogen bonds.

Related literature

For general background, see: Gruter et al. (1995 [triangle]); Soro et al. (2005 [triangle]); Xu et al. (2009b [triangle]). For related structures, see: Hao et al. (2007 [triangle]); Lin et al. (2002 [triangle]); For the synthesis of related cyclomercurated compounds, see: Xu et al. (2009a [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m842-scheme1.jpg

Experimental

Crystal data

  • [Hg(C13H10N3O2)Cl]·H2O
  • M r = 494.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m842-efi1.jpg
  • a = 14.5932 (16) Å
  • b = 14.0111 (15) Å
  • c = 15.3711 (17) Å
  • β = 104.6850 (10)°
  • V = 3040.2 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 10.31 mm−1
  • T = 296 K
  • 0.37 × 0.28 × 0.25 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.113, T max = 0.179 (expected range = 0.048–0.076)
  • 22798 measured reflections
  • 5658 independent reflections
  • 4683 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.046
  • S = 1.05
  • 5658 reflections
  • 381 parameters
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.83 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809023824/si2184sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023824/si2184Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the High-Level Personnel to Start Research Fund of Pingdingshan University (No. 2006044).

supplementary crystallographic information

Comment

Cyclometallated compounds have attracted much research interest owing to theirs utility in synthesis, catalysis and materials (Gruter et al., 1995; Xu et al., 2009b). Among them, cyclomercurated compounds are easy to prepare through a C—H activation process and are stable but reasonably reactive. Although numerous cyclomercurated compounds have been widely investigated, and many examples have been reported(Soro et al., 2005; Hao et al., 2007), only a few cyclometallated Schiff bases containing heterocyclic ring are known(Lin et al., 2002).

The asymmetric unit of the title compound (Fig.1) contains two independent mercury(II) complexes with slightly different conformations, related via a pseudo-inversion centre (1/2a, 3/4b, 1/4c), and two water molecules. The HgII atoms show a typical linear coordination geometry with a carbon atom of the benzene ring and the chloride atom in trans position. A benzene carbon and the azomethine nitrogen atom chelate the mercury(II) atoms with weak intramolecular Hg···N bonding distances of 2.735 (3)Å and 2.739 (3) Å. which are shorter than those of the related HgII complex (Hao et al., (2007); Lin et al., (2002); Xu et al., (2009a). The C—Hg and Hg—Cl bond distances are within normal ranges. The C1—Hg1—Cl1 and C14—Hg2—Cl2 angles are 173.85 (10)° and 174.67 (10)°, slightly smaller than the ideal value of 180° in organic derivatives of mercury. The resulting five-membered metallacycles are nearly coplanar with the benzene ring, while the pyridine are not coplanar with the benzene. In the crystal structure, intermolecular O—H···O, N—H···O and O—H···N hydrogen bonds (Table 1) link the independent HgII complexes and the water molecules into a three-dimensional network.

Experimental

Chlorido(2-formyl-6-hydroxybenzaldehyde-kC1)mercury(II) was synthesized according to the reported procedure (Xu et al., 2009a). The title compound was prepared from the above compound with isonicotinoylhydrazine and recrystallized from ethanol solution at room temperature to give the desired product as colourless crystals suitable for single-crystal X-ray diffraction.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their patent atoms, with distances: C—H = 0.93 Å, N—H = 0.86 Å, and O—H = 0.82 Å. The Uiso(H) values were set at 1.2Ueq (C,N) and 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of the title compound with displacement ellipsoids at the 30% probability level.

Crystal data

[Hg(C13H10N3O2)Cl]·H2OF(000) = 1856
Mr = 494.30Dx = 2.160 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.5932 (16) ÅCell parameters from 5064 reflections
b = 14.0111 (15) Åθ = 2.7–28.3°
c = 15.3711 (17) ŵ = 10.31 mm1
β = 104.685 (1)°T = 296 K
V = 3040.2 (6) Å3Block, colorless
Z = 80.37 × 0.28 × 0.25 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer5658 independent reflections
Radiation source: fine-focus sealed tube4683 reflections with I > 2σ(I)
graphiteRint = 0.030
[var phi] and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −17→17
Tmin = 0.113, Tmax = 0.179k = −16→16
22798 measured reflectionsl = −16→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0197P)2 + 1.3364P] where P = (Fo2 + 2Fc2)/3
5658 reflections(Δ/σ)max = 0.002
381 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = −0.83 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Hg10.909422 (9)0.795528 (10)0.140566 (10)0.03271 (5)
Hg20.088755 (10)0.667392 (10)0.363229 (10)0.03354 (5)
Cl11.06292 (6)0.74039 (8)0.15848 (7)0.0482 (3)
Cl2−0.06489 (7)0.72341 (8)0.34424 (7)0.0485 (3)
O10.85291 (17)1.00819 (18)0.13735 (19)0.0444 (7)
H10.84091.06410.12310.067*
O20.91602 (18)0.54581 (19)0.0795 (2)0.0539 (8)
O30.14451 (18)0.45504 (17)0.3573 (2)0.0473 (7)
H30.15650.39870.36930.071*
O40.08053 (18)0.91980 (18)0.4187 (2)0.0494 (7)
N10.7764 (2)0.6537 (2)0.1123 (2)0.0339 (7)
N20.7733 (2)0.55515 (19)0.11402 (19)0.0338 (7)
H2D0.72530.52550.12390.041*
N30.8374 (2)0.2013 (2)0.1131 (2)0.0397 (8)
N40.2225 (2)0.8089 (2)0.3911 (2)0.0362 (7)
N50.2266 (2)0.9077 (2)0.39086 (19)0.0352 (7)
H5D0.27600.93680.38360.042*
N60.1645 (2)1.2624 (2)0.3851 (2)0.0397 (8)
C10.7779 (2)0.8579 (2)0.1197 (2)0.0279 (8)
C20.7707 (3)0.9568 (3)0.1195 (2)0.0349 (8)
C30.6823 (3)1.0005 (3)0.1066 (3)0.0431 (10)
H3A0.67791.06670.10760.052*
C40.6011 (3)0.9454 (3)0.0924 (3)0.0495 (11)
H40.54220.97460.08300.059*
C50.6075 (3)0.8465 (3)0.0920 (3)0.0411 (9)
H50.55280.80970.08300.049*
C60.6953 (2)0.8023 (2)0.1051 (2)0.0313 (8)
C70.6986 (3)0.6972 (2)0.1046 (2)0.0331 (8)
H70.64300.66250.09860.040*
C80.8484 (3)0.5069 (2)0.0996 (2)0.0351 (9)
C90.8433 (2)0.4003 (2)0.1063 (2)0.0302 (8)
C100.8804 (2)0.3447 (2)0.0486 (3)0.0361 (9)
H100.90890.37310.00750.043*
C110.8744 (2)0.2467 (3)0.0532 (3)0.0379 (9)
H110.89730.21020.01270.046*
C120.8025 (3)0.2558 (3)0.1688 (3)0.0416 (9)
H120.77600.22540.21040.050*
C130.8035 (3)0.3542 (3)0.1680 (3)0.0393 (9)
H130.77820.38900.20790.047*
C140.2197 (2)0.6052 (2)0.3792 (2)0.0291 (8)
C150.3026 (3)0.6602 (2)0.3951 (2)0.0324 (8)
C160.3903 (3)0.6153 (3)0.4047 (3)0.0446 (10)
H160.44530.65180.41490.054*
C170.3955 (3)0.5171 (3)0.3992 (3)0.0510 (11)
H170.45400.48760.40570.061*
C180.3143 (3)0.4625 (3)0.3840 (3)0.0447 (10)
H180.31800.39650.37980.054*
C190.2271 (3)0.5063 (3)0.3751 (2)0.0350 (9)
C200.3007 (3)0.7648 (3)0.3986 (2)0.0361 (9)
H200.35680.79920.40630.043*
C210.1510 (2)0.9574 (3)0.4023 (2)0.0352 (8)
C220.1583 (2)1.0639 (2)0.3948 (2)0.0305 (8)
C230.1992 (3)1.1083 (3)0.3340 (2)0.0381 (9)
H230.22591.07270.29550.046*
C240.1997 (3)1.2072 (2)0.3315 (3)0.0392 (9)
H240.22651.23670.28960.047*
C250.1267 (3)1.2190 (3)0.4458 (3)0.0386 (9)
H250.10361.25670.48540.046*
C260.1205 (2)1.1212 (3)0.4521 (2)0.0372 (9)
H260.09191.09360.49350.045*
O50.89687 (19)0.9980 (2)0.33618 (19)0.0566 (8)
H1W0.94710.97520.36830.085*
H2W0.90021.00180.28290.085*
O60.10303 (19)0.4671 (2)0.1547 (2)0.0618 (8)
H3W0.08900.45810.20310.093*
H4W0.05710.48820.11610.093*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Hg10.03055 (8)0.02692 (10)0.04319 (9)0.00303 (6)0.01399 (6)0.00319 (6)
Hg20.03092 (8)0.02783 (10)0.04418 (9)0.00243 (6)0.01377 (6)0.00243 (6)
Cl10.0326 (5)0.0563 (7)0.0615 (7)0.0070 (4)0.0225 (5)0.0088 (5)
Cl20.0337 (5)0.0583 (7)0.0585 (7)0.0064 (4)0.0213 (5)0.0088 (5)
O10.0416 (15)0.0241 (15)0.0673 (19)−0.0017 (11)0.0136 (14)0.0059 (13)
O20.0427 (16)0.0345 (16)0.092 (2)−0.0030 (12)0.0304 (16)0.0051 (15)
O30.0496 (17)0.0181 (14)0.074 (2)0.0002 (12)0.0163 (14)0.0048 (14)
O40.0429 (16)0.0295 (16)0.081 (2)−0.0021 (12)0.0254 (15)0.0056 (14)
N10.0407 (18)0.0175 (16)0.0423 (18)0.0007 (13)0.0085 (15)0.0004 (13)
N20.0329 (16)0.0204 (17)0.0505 (19)−0.0019 (12)0.0151 (14)−0.0009 (13)
N30.045 (2)0.026 (2)0.047 (2)0.0007 (13)0.0098 (16)0.0011 (14)
N40.0443 (19)0.0212 (17)0.0430 (19)−0.0063 (14)0.0108 (15)−0.0037 (14)
N50.0349 (17)0.0217 (17)0.0505 (19)−0.0045 (13)0.0135 (14)−0.0018 (14)
N60.0408 (18)0.0281 (19)0.050 (2)0.0005 (14)0.0120 (16)0.0004 (15)
C10.0333 (19)0.0218 (19)0.0300 (19)0.0068 (14)0.0103 (15)0.0038 (14)
C20.040 (2)0.028 (2)0.037 (2)0.0015 (16)0.0096 (17)0.0025 (16)
C30.048 (2)0.025 (2)0.057 (3)0.0112 (18)0.014 (2)0.0000 (18)
C40.042 (2)0.041 (3)0.063 (3)0.0197 (19)0.010 (2)0.004 (2)
C50.032 (2)0.035 (2)0.054 (3)−0.0009 (16)0.0046 (18)0.0005 (18)
C60.036 (2)0.025 (2)0.034 (2)0.0047 (15)0.0097 (16)−0.0003 (15)
C70.037 (2)0.025 (2)0.038 (2)−0.0028 (15)0.0117 (17)−0.0013 (16)
C80.036 (2)0.024 (2)0.044 (2)−0.0021 (16)0.0075 (17)0.0039 (16)
C90.0301 (18)0.021 (2)0.037 (2)0.0014 (14)0.0052 (15)0.0032 (15)
C100.037 (2)0.029 (2)0.044 (2)−0.0006 (16)0.0154 (18)0.0009 (17)
C110.039 (2)0.030 (2)0.046 (2)0.0082 (16)0.0132 (18)−0.0025 (18)
C120.049 (2)0.037 (3)0.042 (2)−0.0021 (18)0.0186 (19)0.0061 (19)
C130.052 (2)0.024 (2)0.044 (2)0.0024 (17)0.0164 (19)−0.0021 (17)
C140.0347 (19)0.023 (2)0.0320 (19)0.0054 (14)0.0118 (16)0.0031 (15)
C150.038 (2)0.026 (2)0.033 (2)0.0030 (15)0.0092 (17)0.0014 (15)
C160.034 (2)0.040 (3)0.057 (3)0.0023 (17)0.0062 (19)−0.0017 (19)
C170.038 (2)0.041 (3)0.070 (3)0.0165 (18)0.006 (2)0.005 (2)
C180.048 (2)0.026 (2)0.058 (3)0.0120 (18)0.009 (2)0.0042 (18)
C190.041 (2)0.023 (2)0.040 (2)−0.0009 (16)0.0077 (17)0.0044 (16)
C200.034 (2)0.028 (2)0.046 (2)−0.0025 (16)0.0108 (17)−0.0024 (17)
C210.031 (2)0.032 (2)0.041 (2)−0.0013 (16)0.0066 (17)−0.0004 (17)
C220.0282 (18)0.023 (2)0.039 (2)0.0017 (14)0.0065 (16)0.0007 (16)
C230.047 (2)0.034 (2)0.037 (2)0.0030 (17)0.0175 (18)−0.0026 (17)
C240.050 (2)0.026 (2)0.046 (2)−0.0040 (16)0.0194 (19)0.0040 (17)
C250.040 (2)0.030 (2)0.048 (2)0.0069 (16)0.0135 (19)−0.0033 (17)
C260.034 (2)0.040 (2)0.041 (2)0.0041 (16)0.0151 (17)0.0042 (17)
O50.0477 (17)0.068 (2)0.0577 (19)0.0121 (15)0.0196 (15)0.0016 (15)
O60.0449 (17)0.072 (2)0.071 (2)0.0108 (15)0.0201 (16)−0.0060 (17)

Geometric parameters (Å, °)

Hg1—C12.059 (3)C8—C91.501 (5)
Hg1—Cl12.3189 (9)C9—C131.390 (5)
Hg2—C142.058 (3)C9—C101.389 (5)
Hg2—Cl22.3231 (10)C10—C111.379 (5)
O1—C21.366 (4)C10—H100.9300
O1—H10.8200C11—H110.9300
O2—C81.233 (4)C12—C131.379 (5)
O3—C191.369 (4)C12—H120.9300
O3—H30.8200C13—H130.9300
O4—C211.237 (4)C14—C191.391 (5)
N1—C71.268 (4)C14—C151.402 (5)
N1—N21.382 (4)C15—C161.400 (5)
N2—C81.354 (4)C15—C201.468 (5)
N2—H2D0.8600C16—C171.383 (5)
N3—C121.340 (5)C16—H160.9300
N3—C111.341 (5)C17—C181.379 (5)
N4—C201.277 (4)C17—H170.9300
N4—N51.386 (4)C18—C191.389 (5)
N5—C211.353 (4)C18—H180.9300
N5—H5D0.8600C20—H200.9300
N6—C241.323 (4)C21—C221.502 (5)
N6—C251.345 (4)C22—C231.379 (5)
C1—C21.388 (5)C22—C261.402 (5)
C1—C61.405 (5)C23—C241.387 (5)
C2—C31.397 (5)C23—H230.9300
C3—C41.384 (5)C24—H240.9300
C3—H3A0.9300C25—C261.378 (5)
C4—C51.389 (5)C25—H250.9300
C4—H40.9300C26—H260.9300
C5—C61.392 (5)O5—H1W0.8363
C5—H50.9300O5—H2W0.8344
C6—C71.473 (5)O6—H3W0.8298
C7—H70.9300O6—H4W0.8293
C1—Hg1—Cl1173.85 (10)N3—C12—C13123.8 (3)
C14—Hg2—Cl2174.67 (10)N3—C12—H12118.1
C2—O1—H1109.5C13—C12—H12118.1
C19—O3—H3109.5C12—C13—C9118.5 (3)
C7—N1—N2116.7 (3)C12—C13—H13120.7
C8—N2—N1117.6 (3)C9—C13—H13120.7
C8—N2—H2D121.2C19—C14—C15118.8 (3)
N1—N2—H2D121.2C19—C14—Hg2119.7 (3)
C12—N3—C11117.0 (3)C15—C14—Hg2121.4 (2)
C20—N4—N5116.5 (3)C16—C15—C14119.8 (3)
C21—N5—N4118.5 (3)C16—C15—C20118.0 (3)
C21—N5—H5D120.7C14—C15—C20122.2 (3)
N4—N5—H5D120.7C17—C16—C15120.2 (4)
C24—N6—C25117.4 (3)C17—C16—H16119.9
C2—C1—C6119.5 (3)C15—C16—H16119.9
C2—C1—Hg1119.4 (3)C18—C17—C16120.2 (4)
C6—C1—Hg1121.1 (2)C18—C17—H17119.9
O1—C2—C1117.6 (3)C16—C17—H17119.9
O1—C2—C3122.0 (3)C17—C18—C19119.9 (4)
C1—C2—C3120.3 (3)C17—C18—H18120.0
C4—C3—C2120.0 (4)C19—C18—H18120.0
C4—C3—H3A120.0O3—C19—C18121.7 (3)
C2—C3—H3A120.0O3—C19—C14117.2 (3)
C3—C4—C5120.2 (3)C18—C19—C14121.0 (3)
C3—C4—H4119.9N4—C20—C15120.3 (3)
C5—C4—H4119.9N4—C20—H20119.9
C4—C5—C6120.2 (3)C15—C20—H20119.9
C4—C5—H5119.9O4—C21—N5123.6 (3)
C6—C5—H5119.9O4—C21—C22121.2 (3)
C5—C6—C1119.8 (3)N5—C21—C22115.2 (3)
C5—C6—C7118.3 (3)C23—C22—C26118.4 (3)
C1—C6—C7121.9 (3)C23—C22—C21123.4 (3)
N1—C7—C6120.6 (3)C26—C22—C21118.3 (3)
N1—C7—H7119.7C22—C23—C24118.3 (3)
C6—C7—H7119.7C22—C23—H23120.8
O2—C8—N2123.6 (3)C24—C23—H23120.8
O2—C8—C9121.0 (3)N6—C24—C23124.1 (3)
N2—C8—C9115.4 (3)N6—C24—H24117.9
C13—C9—C10118.2 (3)C23—C24—H24117.9
C13—C9—C8123.1 (3)N6—C25—C26122.9 (3)
C10—C9—C8118.7 (3)N6—C25—H25118.6
C11—C10—C9119.1 (3)C26—C25—H25118.6
C11—C10—H10120.5C25—C26—C22118.8 (3)
C9—C10—H10120.5C25—C26—H26120.6
N3—C11—C10123.3 (3)C22—C26—H26120.6
N3—C11—H11118.4H1W—O5—H2W110.1
C10—C11—H11118.4H3W—O6—H4W111.0
C7—N1—N2—C8163.9 (3)C8—C9—C13—C12−179.9 (3)
C20—N4—N5—C21−166.2 (3)Cl2—Hg2—C14—C192.9 (12)
Cl1—Hg1—C1—C2−23.9 (11)Cl2—Hg2—C14—C15−176.6 (8)
Cl1—Hg1—C1—C6155.6 (7)C19—C14—C15—C161.2 (5)
C6—C1—C2—O1177.6 (3)Hg2—C14—C15—C16−179.3 (3)
Hg1—C1—C2—O1−2.8 (4)C19—C14—C15—C20178.7 (3)
C6—C1—C2—C31.2 (5)Hg2—C14—C15—C20−1.8 (5)
Hg1—C1—C2—C3−179.2 (3)C14—C15—C16—C17−0.4 (6)
O1—C2—C3—C4−177.4 (4)C20—C15—C16—C17−178.0 (4)
C1—C2—C3—C4−1.1 (6)C15—C16—C17—C180.1 (6)
C2—C3—C4—C50.8 (6)C16—C17—C18—C19−0.6 (6)
C3—C4—C5—C6−0.6 (6)C17—C18—C19—O3178.0 (4)
C4—C5—C6—C10.8 (6)C17—C18—C19—C141.4 (6)
C4—C5—C6—C7179.7 (3)C15—C14—C19—O3−178.5 (3)
C2—C1—C6—C5−1.1 (5)Hg2—C14—C19—O32.1 (4)
Hg1—C1—C6—C5179.4 (3)C15—C14—C19—C18−1.7 (5)
C2—C1—C6—C7−179.9 (3)Hg2—C14—C19—C18178.8 (3)
Hg1—C1—C6—C70.5 (5)N5—N4—C20—C15−177.1 (3)
N2—N1—C7—C6178.0 (3)C16—C15—C20—N4−179.3 (4)
C5—C6—C7—N1176.9 (3)C14—C15—C20—N43.2 (5)
C1—C6—C7—N1−4.2 (5)N4—N5—C21—O44.8 (5)
N1—N2—C8—O2−4.8 (5)N4—N5—C21—C22−175.9 (3)
N1—N2—C8—C9177.4 (3)O4—C21—C22—C23−143.1 (4)
O2—C8—C9—C13145.8 (4)N5—C21—C22—C2337.6 (5)
N2—C8—C9—C13−36.3 (5)O4—C21—C22—C2636.2 (5)
O2—C8—C9—C10−33.8 (5)N5—C21—C22—C26−143.1 (3)
N2—C8—C9—C10144.1 (3)C26—C22—C23—C24−1.0 (5)
C13—C9—C10—C111.5 (5)C21—C22—C23—C24178.3 (3)
C8—C9—C10—C11−178.9 (3)C25—N6—C24—C230.5 (6)
C12—N3—C11—C102.0 (5)C22—C23—C24—N61.1 (6)
C9—C10—C11—N3−2.5 (5)C24—N6—C25—C26−2.2 (5)
C11—N3—C12—C13−0.6 (5)N6—C25—C26—C222.3 (5)
N3—C12—C13—C9−0.2 (6)C23—C22—C26—C25−0.6 (5)
C10—C9—C13—C12−0.3 (5)C21—C22—C26—C25−179.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O6—H4W···O2i0.832.152.898 (4)150
O6—H3W···O30.832.303.023 (4)146
O5—H2W···O10.832.172.963 (4)159
O5—H1W···O4ii0.842.062.876 (4)166
N5—H5D···O6iii0.862.042.872 (4)162
N2—H2D···O5iv0.862.062.890 (4)161
O3—H3···N6v0.821.922.737 (4)171
O1—H1···N3vi0.821.932.733 (4)167

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) −x+1/2, y+1/2, −z+1/2; (iv) −x+3/2, y−1/2, −z+1/2; (v) x, y−1, z; (vi) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2184).

References

  • Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gruter, G. M., Van Klink, G. P. M., Akkerman, O. S. & Bickelhaupt, F. (1995). Chem. Rev.95, 2405–2456
  • Hao, X. Q., Gong, J. F., Song, W. T., Wu, Y. J. & Song, M. P. (2007). Inorg. Chem. Commun.10, 371–375.
  • Lin, K. H., Song, M. P., Zhu, Y. & Wu, Y. J. (2002). J. Organomet. Chem.660, 139–144.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soro, B., Stoccoro, S., Minghetti, G., Zucca, A., Cinellu, M. A., Gladiali, S., Manassero, M. & Sansoni, M. (2005). Organometallics, 24, 53–61.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Xu, C., Cen, F.-F., Wang, Z.-Q. & Zhang, Y.-Q. (2009a). Acta Cryst. E65, m754. [PMC free article] [PubMed]
  • Xu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. & Ji, B. M. (2009b). Organometallics, 28, 1909–1916.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography