PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1480.
Published online 2009 June 6. doi:  10.1107/S1600536809020522
PMCID: PMC2969280

2,6-Bis[1-(2-methyl­phenyl­imino)eth­yl]pyridine

Abstract

The mol­ecule of the title compound, C23H23N3, which was synthesized by the condensation reaction between 2,6-diacetyl­pyridine and 2-dimethyl­aniline, adopts an E configuration about both C=N imine bonds. The dihedral angles formed by the benzene rings with the pyridine ring are 89.68 (5) and 53.62 (6)°.

Related literature

For the applications of pyridine-based ligands in sensor technologies and electro-luminescent devices, see: Tang & Vanslyke (1987 [triangle]); Wang (2001 [triangle]). For the crystal structures of related compounds, see: Mentes et al. (2001 [triangle]); Huang et al. (2006 [triangle]). For the synthesis, see: Fan et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1480-scheme1.jpg

Experimental

Crystal data

  • C23H23N3
  • M r = 341.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1480-efi1.jpg
  • a = 12.966 (3) Å
  • b = 11.304 (2) Å
  • c = 14.767 (3) Å
  • β = 115.62 (3)°
  • V = 1951.6 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 193 K
  • 0.56 × 0.41 × 0.36 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.960, T max = 0.972
  • 18526 measured reflections
  • 4435 independent reflections
  • 2804 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.157
  • S = 1.06
  • 4435 reflections
  • 235 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536809020522/rz2329sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020522/rz2329Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant Nos. 20771030 and 20671025), the Youthful Foundation of Heilongjiang Province of China (grant No. QC06C029) and the Research Fund for the Doctoral Program of Higher Education (grant No. 20070213005).

supplementary crystallographic information

Comment

Luminescent coordination compounds based on pyridine-type ligands have attracted intensive attention due to their potential application in areas of sensor technologies and electro-luminescent devices (Tang & Vanslyke, 1987; Wang, 2001). In order to explore potential luminescent complexes of this type, we prepared a series of bis(iminoalkyl)pyridine ligands by the condensation reaction of 2,6-diacetylpyridine with the corresponding aniline in methanol (Fan et al., 2004). It is still challenging to design and rationally synthesize ligands with unique structures and functions. In this regard, we report herein the synthesis and crystal structure of the title compound.

The molecule of the title compound (Fig. 1) possesses an approximate Cs symmetry about a plane bisecting the pyridine ring. The pyridine ring is coplanar with the two imino groups, which show typical C═N double bond character (1.2606 (18) and 1.2674 (19) Å for N1═C1 and N3═C7, respectively). These values are in good agreement with those observed in 2,6-bis[1-(phenylimino)ethyl]pyridine (1.266 (4) Å; Mentes et al., 2001) and in 2,6-bis[1-(2,6-dimethylphenylimino)ethyl]pyridine (1.265 (2) and 1.271 (2) Å; Huang et al., 2006). The dihedral angles between the C10–C15 and C17–C22 benzene rings and the pyridine ring are 89.68 (5) and 53.62 (6)°, respectively. The crystal packing (Fig. 2) is stabilized only by van der Waals interactions.

Experimental

The title compound was synthesized according to the literatute method (Fan et al., 2004). To a solution of 2,6-diacetylpyridine (1.1 g, 6.7 mmol) in absolute methanol (25 ml) was added 2-dimethylaniline (2.2 ml, 20.5 mmol). After the addition of several drops of formic acid, the reaction mixture was refluxed for 24 h and then allowed to cool down to room temperature. The crude product precipitated as yellow powder. Yellow block crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a methanol solution in 85% yield (1.96 g).

Refinement

All H atoms were positioned geometrically with C—H = 0.93–0.96 Å, and allowed to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structire of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Packing diagram of the title compound viewed along the c axis.

Crystal data

C23H23N3F(000) = 728
Mr = 341.44Dx = 1.162 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 18526 reflections
a = 12.966 (3) Åθ = 3.1–27.5°
b = 11.304 (2) ŵ = 0.07 mm1
c = 14.767 (3) ÅT = 193 K
β = 115.62 (3)°Block, yellow
V = 1951.6 (8) Å30.56 × 0.41 × 0.36 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer4435 independent reflections
Radiation source: fine-focus sealed tube2804 reflections with I > 2σ(I)
graphiteRint = 0.037
phi and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −16→16
Tmin = 0.960, Tmax = 0.972k = −14→13
18526 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0848P)2 + 0.041P] where P = (Fo2 + 2Fc2)/3
4435 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N20.27847 (10)0.74889 (10)0.16139 (9)0.0458 (3)
N1−0.01920 (11)0.79913 (11)0.03667 (10)0.0527 (3)
C60.37804 (12)0.80381 (12)0.18433 (11)0.0448 (4)
N30.57761 (11)0.77842 (11)0.25205 (11)0.0565 (4)
C20.18145 (13)0.80916 (12)0.10943 (11)0.0457 (4)
C10.07290 (13)0.74430 (12)0.08606 (11)0.0476 (4)
C70.48407 (13)0.73369 (12)0.24317 (11)0.0466 (4)
C30.18154 (13)0.92576 (13)0.08007 (12)0.0524 (4)
H3B0.11300.96560.04440.063*
C50.38449 (14)0.92051 (13)0.15758 (13)0.0543 (4)
H5A0.45500.95670.17510.065*
C10−0.12858 (13)0.74706 (12)0.00704 (12)0.0489 (4)
C170.68397 (13)0.72253 (14)0.30780 (13)0.0523 (4)
C15−0.18677 (13)0.75912 (12)0.06699 (12)0.0522 (4)
C40.28403 (14)0.98142 (13)0.10444 (13)0.0586 (4)
H4A0.28581.05950.08530.070*
C14−0.29933 (15)0.72146 (15)0.02802 (15)0.0620 (5)
H14A−0.33950.72980.06680.074*
C220.71360 (14)0.61751 (15)0.27656 (14)0.0633 (5)
H22A0.66020.57880.22020.076*
C90.47073 (15)0.62046 (14)0.28932 (15)0.0633 (5)
H9A0.54430.58400.32480.095*
H9B0.42130.56810.23750.095*
H9C0.43810.63660.33530.095*
C180.76376 (15)0.78082 (15)0.39198 (13)0.0579 (4)
C80.08130 (16)0.61968 (15)0.12366 (17)0.0764 (6)
H8A0.00580.58820.10370.115*
H8B0.12170.61910.19560.115*
H8C0.12170.57210.09580.115*
C13−0.35352 (16)0.67238 (16)−0.06562 (16)0.0697 (5)
H13A−0.42950.6487−0.09020.084*
C11−0.18236 (16)0.69527 (15)−0.08650 (14)0.0634 (5)
H11A−0.14260.6850−0.12540.076*
C200.90039 (16)0.62620 (19)0.41061 (16)0.0742 (6)
H20A0.97330.59460.44540.089*
C12−0.29465 (17)0.65852 (17)−0.12285 (15)0.0721 (5)
H12A−0.33040.6243−0.18620.087*
C190.87169 (16)0.72988 (18)0.44214 (14)0.0708 (5)
H19A0.92590.76740.49880.085*
C16−0.12855 (18)0.81252 (18)0.17075 (15)0.0768 (6)
H16A−0.18090.81380.20090.115*
H16B−0.10490.89180.16590.115*
H16C−0.06290.76590.21140.115*
C210.82176 (17)0.56955 (18)0.32815 (17)0.0744 (5)
H21A0.84070.49900.30660.089*
C230.7334 (2)0.89394 (18)0.42839 (17)0.0874 (6)
H23A0.65610.91540.38470.131*
H23B0.78420.95580.42830.131*
H23C0.74070.88290.49530.131*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N20.0389 (7)0.0437 (7)0.0531 (7)0.0021 (5)0.0183 (6)0.0030 (5)
N10.0407 (7)0.0476 (7)0.0659 (9)0.0017 (5)0.0193 (6)0.0079 (6)
C60.0412 (8)0.0442 (8)0.0508 (8)0.0034 (6)0.0217 (7)0.0030 (6)
N30.0409 (8)0.0550 (7)0.0719 (9)0.0030 (6)0.0227 (7)0.0109 (6)
C20.0413 (8)0.0460 (8)0.0493 (8)0.0043 (6)0.0191 (7)0.0026 (6)
C10.0423 (8)0.0458 (8)0.0533 (9)0.0019 (6)0.0193 (7)0.0031 (6)
C70.0421 (8)0.0441 (7)0.0537 (9)0.0027 (6)0.0208 (7)−0.0005 (6)
C30.0439 (9)0.0460 (8)0.0631 (10)0.0072 (6)0.0191 (7)0.0075 (7)
C50.0434 (9)0.0472 (8)0.0721 (11)−0.0002 (6)0.0247 (8)0.0068 (7)
C100.0394 (8)0.0399 (7)0.0619 (9)0.0040 (6)0.0166 (7)0.0108 (6)
C170.0384 (8)0.0541 (9)0.0654 (10)0.0012 (7)0.0234 (8)0.0113 (7)
C150.0446 (9)0.0435 (8)0.0658 (10)0.0024 (6)0.0212 (8)0.0074 (7)
C40.0521 (10)0.0421 (8)0.0790 (11)0.0036 (7)0.0260 (8)0.0122 (7)
C140.0454 (9)0.0622 (10)0.0774 (12)0.0018 (8)0.0256 (9)0.0112 (9)
C220.0455 (9)0.0639 (10)0.0785 (12)0.0029 (8)0.0248 (9)0.0004 (8)
C90.0487 (10)0.0548 (9)0.0876 (13)0.0091 (7)0.0305 (9)0.0182 (8)
C180.0542 (10)0.0614 (9)0.0583 (10)−0.0042 (8)0.0245 (8)0.0091 (7)
C80.0511 (10)0.0542 (10)0.1118 (16)0.0021 (8)0.0239 (10)0.0249 (10)
C130.0429 (9)0.0704 (11)0.0806 (13)−0.0085 (8)0.0125 (9)0.0122 (10)
C110.0589 (11)0.0667 (10)0.0621 (11)−0.0051 (8)0.0238 (9)0.0013 (8)
C200.0415 (10)0.0890 (14)0.0863 (14)0.0123 (9)0.0222 (10)0.0223 (11)
C120.0647 (12)0.0717 (11)0.0630 (11)−0.0148 (9)0.0116 (10)−0.0010 (9)
C190.0518 (11)0.0886 (13)0.0613 (11)−0.0094 (9)0.0143 (9)0.0121 (9)
C160.0730 (13)0.0819 (13)0.0805 (14)−0.0175 (10)0.0380 (11)−0.0189 (10)
C210.0567 (11)0.0729 (11)0.1024 (15)0.0155 (9)0.0428 (11)0.0108 (11)
C230.1025 (18)0.0732 (12)0.0791 (14)−0.0003 (12)0.0323 (13)−0.0034 (10)

Geometric parameters (Å, °)

N2—C61.3374 (18)C22—H22A0.9300
N2—C21.3420 (18)C9—H9A0.9600
N1—C11.2606 (18)C9—H9B0.9600
N1—C101.4187 (19)C9—H9C0.9600
C6—C51.390 (2)C18—C191.394 (3)
C6—C71.497 (2)C18—C231.504 (3)
N3—C71.2674 (19)C8—H8A0.9600
N3—C171.413 (2)C8—H8B0.9600
C2—C31.388 (2)C8—H8C0.9600
C2—C11.489 (2)C13—C121.371 (3)
C1—C81.501 (2)C13—H13A0.9300
C7—C91.495 (2)C11—C121.380 (3)
C3—C41.370 (2)C11—H11A0.9300
C3—H3B0.9300C20—C211.363 (3)
C5—C41.379 (2)C20—C191.371 (3)
C5—H5A0.9300C20—H20A0.9300
C10—C111.380 (2)C12—H12A0.9300
C10—C151.396 (2)C19—H19A0.9300
C17—C221.387 (2)C16—H16A0.9600
C17—C181.392 (2)C16—H16B0.9600
C15—C141.384 (2)C16—H16C0.9600
C15—C161.511 (3)C21—H21A0.9300
C4—H4A0.9300C23—H23A0.9600
C14—C131.369 (3)C23—H23B0.9600
C14—H14A0.9300C23—H23C0.9600
C22—C211.385 (2)
C6—N2—C2118.22 (12)C7—C9—H9C109.5
C1—N1—C10123.03 (12)H9A—C9—H9C109.5
N2—C6—C5122.59 (13)H9B—C9—H9C109.5
N2—C6—C7116.43 (12)C17—C18—C19117.84 (17)
C5—C6—C7120.96 (13)C17—C18—C23120.89 (17)
C7—N3—C17122.08 (13)C19—C18—C23121.26 (18)
N2—C2—C3122.25 (14)C1—C8—H8A109.5
N2—C2—C1116.17 (12)C1—C8—H8B109.5
C3—C2—C1121.58 (13)H8A—C8—H8B109.5
N1—C1—C2117.13 (13)C1—C8—H8C109.5
N1—C1—C8125.07 (14)H8A—C8—H8C109.5
C2—C1—C8117.79 (13)H8B—C8—H8C109.5
N3—C7—C9126.06 (14)C14—C13—C12119.32 (17)
N3—C7—C6116.53 (13)C14—C13—H13A120.3
C9—C7—C6117.37 (13)C12—C13—H13A120.3
C4—C3—C2119.07 (14)C10—C11—C12120.57 (19)
C4—C3—H3B120.5C10—C11—H11A119.7
C2—C3—H3B120.5C12—C11—H11A119.7
C4—C5—C6118.51 (14)C21—C20—C19119.81 (17)
C4—C5—H5A120.7C21—C20—H20A120.1
C6—C5—H5A120.7C19—C20—H20A120.1
C11—C10—C15119.90 (15)C13—C12—C11120.05 (18)
C11—C10—N1119.33 (16)C13—C12—H12A120.0
C15—C10—N1120.41 (15)C11—C12—H12A120.0
C22—C17—C18119.76 (15)C20—C19—C18122.03 (18)
C22—C17—N3121.99 (15)C20—C19—H19A119.0
C18—C17—N3118.04 (15)C18—C19—H19A119.0
C14—C15—C10117.91 (16)C15—C16—H16A109.5
C14—C15—C16121.28 (17)C15—C16—H16B109.5
C10—C15—C16120.81 (15)H16A—C16—H16B109.5
C3—C4—C5119.35 (14)C15—C16—H16C109.5
C3—C4—H4A120.3H16A—C16—H16C109.5
C5—C4—H4A120.3H16B—C16—H16C109.5
C13—C14—C15122.21 (18)C20—C21—C22119.73 (18)
C13—C14—H14A118.9C20—C21—H21A120.1
C15—C14—H14A118.9C22—C21—H21A120.1
C21—C22—C17120.83 (17)C18—C23—H23A109.5
C21—C22—H22A119.6C18—C23—H23B109.5
C17—C22—H22A119.6H23A—C23—H23B109.5
C7—C9—H9A109.5C18—C23—H23C109.5
C7—C9—H9B109.5H23A—C23—H23C109.5
H9A—C9—H9B109.5H23B—C23—H23C109.5
C2—N2—C6—C50.8 (2)C11—C10—C15—C14−2.1 (2)
C2—N2—C6—C7179.43 (13)N1—C10—C15—C14170.93 (13)
C6—N2—C2—C3−0.6 (2)C11—C10—C15—C16178.34 (15)
C6—N2—C2—C1−179.79 (13)N1—C10—C15—C16−8.6 (2)
C10—N1—C1—C2178.32 (14)C2—C3—C4—C5−0.1 (3)
C10—N1—C1—C8−2.3 (3)C6—C5—C4—C30.3 (3)
N2—C2—C1—N1−179.50 (14)C10—C15—C14—C130.8 (2)
C3—C2—C1—N11.3 (2)C16—C15—C14—C13−179.72 (16)
N2—C2—C1—C81.0 (2)C18—C17—C22—C210.1 (3)
C3—C2—C1—C8−178.12 (16)N3—C17—C22—C21174.74 (16)
C17—N3—C7—C91.0 (3)C22—C17—C18—C19−0.2 (2)
C17—N3—C7—C6178.40 (14)N3—C17—C18—C19−175.06 (15)
N2—C6—C7—N3169.72 (14)C22—C17—C18—C23−179.14 (17)
C5—C6—C7—N3−11.6 (2)N3—C17—C18—C236.0 (2)
N2—C6—C7—C9−12.7 (2)C15—C14—C13—C120.7 (3)
C5—C6—C7—C9165.96 (16)C15—C10—C11—C122.1 (2)
N2—C2—C3—C40.3 (2)N1—C10—C11—C12−171.07 (15)
C1—C2—C3—C4179.40 (15)C14—C13—C12—C11−0.8 (3)
N2—C6—C5—C4−0.6 (2)C10—C11—C12—C13−0.5 (3)
C7—C6—C5—C4−179.19 (15)C21—C20—C19—C18−0.4 (3)
C1—N1—C10—C11−93.60 (19)C17—C18—C19—C200.4 (3)
C1—N1—C10—C1593.31 (19)C23—C18—C19—C20179.31 (19)
C7—N3—C17—C2268.2 (2)C19—C20—C21—C220.3 (3)
C7—N3—C17—C18−117.05 (18)C17—C22—C21—C20−0.1 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2329).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fan, R. Q., Zhu, D. S., Mu, Y., Li, G. H., Yang, Y. L., Su, Q. & Feng, S. H. (2004). Eur. J. Inorg. Chem. pp. 4891–4897.
  • Huang, Y.-B., Ma, X.-L., Zheng, S.-N., Chen, J.-X. & Wei, C.-X. (2006). Acta Cryst. E62, o3044–o3045.
  • Mentes, A., Fawcett, J. & Kemmitt, R. D. W. (2001). Acta Cryst. E57, o424–o425.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tang, C. W. & Vanslyke, S. A. (1987). Appl. Phys. Lett.51, 913–915.
  • Wang, S. N. (2001). Coord. Chem. Rev.215, 79–98.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography