PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1500.
Published online 2009 June 6. doi:  10.1107/S1600536809019485
PMCID: PMC2969279

2,2′,4,4′-Tetra­methyl-7,7′-diazenediylbis(1,8-naphthyridin-1-ium) bis­(perchlorate)

Abstract

In the title salt, C20H20N6 2+·2ClO4 , the cation is disposed about a center of symmetry at the mid-point of the N=N bond. The 1,8-naphthyridine systems are planar and the ten atoms have a mean deviation of 0.01 Å from the least-squares plane. The two planar 1,8-naphthyridine units are parallel but extend in opposite directions from the diazene bridge. The 1,8-naphthyridine aminium groups inter­act with perchlorate O atoms through N—H(...)O hydrogen bonds.

Related literature

For 1,8-naphthyridine and its derivatives, see: Baker & Norman (2004 [triangle]); Ferrarini et al. (1997 [triangle]); Gavrilova & Bosnich (2004 [triangle]); Stadie et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1500-scheme1.jpg

Experimental

Crystal data

  • C20H20N6 2+·2ClO4
  • M r = 543.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1500-efi1.jpg
  • a = 8.2008 (16) Å
  • b = 13.042 (3) Å
  • c = 11.133 (2) Å
  • β = 102.63 (3)°
  • V = 1161.9 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 113 K
  • 0.16 × 0.12 × 0.06 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.946, T max = 0.975
  • 9220 measured reflections
  • 2669 independent reflections
  • 2244 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.123
  • S = 1.06
  • 2669 reflections
  • 169 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019485/hg2501sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019485/hg2501Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Henan Agricultural University for the generous support of this study.

supplementary crystallographic information

Comment

1,8-Naphthyridine and its derivatives are used for binding of mismatched guanine or used as versatile ligands which are able to form metal aggregates with monodentates fashion or chelating bidentate fashion (Ferrarini et al., 1997; Gavrilova & Bosnich, 2004; Baker & Norman, 2004; Stadie et al., 2007). We report here a new 1,8-Naphthyridine compound, Fig. 1.

The title compound reveals 1,8-naphthyridine rings are linked by azo double bond, compound (I) is coplanar between two 1,8-naphthyridine rings. Each 1,8-naphthyridine ring is an almost planar group in which the ten atoms forming the 1,8-naphthyridine ring have mean deviation of 0.01 Å from the least-squares plane calculated using the ten atoms. The cation part sits on a center of symmetry at the mid-point of the N—N bond. To balance hydrogen ion charge of two 1,8-naphthyridine rings, there are two perchlorate groups in the crystal cell. The structure shows N-H···O hydrogen bonds between the amines ions of 1,8-naphthyridine groups and O atoms of perchlorate anions.

Experimental

Single crystals of (I) suitable for an X-ray study were obtained by slow evaporation of an aqueous ethanol solution (30% v/v) in the presence of perchloric acid at 293 K over a period of four weeks.

Refinement

Carbon bound hydrogen atoms were generated geometrically (C—H bond lengths of methylgroup fixed at 0.96Å, C—H bond lengths of naphthyridine fixed at 0.93Å), assigned appropriated isotropic thermal parameters, Uiso(H) = 1.2Ueq(C). The nitrogen proton was refined with the N—H bond length of naphthyridine fixed at 0.89 Å and with Uiso(H) = 1.5Ueq(N).

Figures

Fig. 1.
Molecular structure of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at the 40% probability level. The hydrogen bond is shown as a dashed line. [Symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) 0.5 + x, 1.5 - y, -0.5 ...

Crystal data

C20H20N62+·2ClO4F(000) = 560
Mr = 543.32Dx = 1.553 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3246 reflections
a = 8.2008 (16) Åθ = 2.4–27.7°
b = 13.042 (3) ŵ = 0.34 mm1
c = 11.133 (2) ÅT = 113 K
β = 102.63 (3)°Prism, yellow
V = 1161.9 (4) Å30.16 × 0.12 × 0.06 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer2669 independent reflections
Radiation source: fine-focus sealed tube2244 reflections with I > 2σ(I)
graphiteRint = 0.042
[var phi] and ω scansθmax = 27.7°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −8→10
Tmin = 0.946, Tmax = 0.975k = −16→16
9220 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0581P)2 + 0.8149P] where P = (Fo2 + 2Fc2)/3
2669 reflections(Δ/σ)max = 0.001
169 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.6259 (2)0.83991 (12)0.80976 (14)0.0192 (4)
N20.5576 (2)0.68663 (12)0.88762 (14)0.0166 (3)
N30.4967 (2)0.52789 (12)0.95394 (14)0.0177 (3)
C10.6950 (3)0.99037 (16)0.70209 (19)0.0290 (5)
H1A0.75250.94660.65570.044*
H1B0.75731.05260.72280.044*
H1C0.58601.00630.65370.044*
C20.6780 (3)0.93708 (15)0.81696 (17)0.0198 (4)
C30.7132 (3)0.98554 (15)0.93190 (18)0.0214 (4)
H30.74801.05360.93720.026*
C40.6978 (2)0.93524 (15)1.03682 (17)0.0199 (4)
C50.6409 (2)0.83139 (14)1.02677 (16)0.0167 (4)
C60.6177 (3)0.77045 (15)1.12667 (17)0.0196 (4)
H60.63560.79781.20560.024*
C70.5685 (3)0.67085 (15)1.10573 (16)0.0191 (4)
H70.55240.62931.17010.023*
C80.5425 (2)0.63213 (14)0.98489 (15)0.0156 (4)
C90.6065 (2)0.78426 (14)0.91017 (16)0.0156 (4)
C100.7442 (3)0.98621 (16)1.15997 (19)0.0291 (5)
H10A0.84100.95321.20880.044*
H10B0.65290.98091.20080.044*
H10C0.76861.05721.14930.044*
Cl10.07021 (6)0.72566 (4)0.98120 (4)0.02260 (17)
O10.1777 (3)0.76617 (13)1.09150 (15)0.0440 (5)
O20.1613 (2)0.65386 (14)0.92339 (14)0.0372 (4)
O3−0.0642 (2)0.67208 (14)1.01881 (17)0.0407 (5)
O40.0056 (2)0.80751 (14)0.89857 (15)0.0380 (4)
H10.607 (3)0.8059 (18)0.7387 (15)0.037 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0273 (9)0.0158 (8)0.0153 (7)−0.0011 (7)0.0063 (6)−0.0005 (6)
N20.0196 (8)0.0150 (8)0.0155 (7)−0.0003 (6)0.0049 (6)0.0008 (6)
N30.0214 (8)0.0162 (8)0.0157 (7)−0.0016 (6)0.0043 (6)0.0014 (6)
C10.0447 (14)0.0198 (10)0.0250 (10)−0.0061 (9)0.0129 (10)0.0031 (8)
C20.0226 (10)0.0160 (9)0.0216 (9)0.0005 (8)0.0068 (7)0.0031 (7)
C30.0240 (10)0.0153 (9)0.0248 (9)−0.0026 (8)0.0049 (8)−0.0002 (7)
C40.0204 (10)0.0182 (9)0.0196 (9)0.0002 (8)0.0011 (7)−0.0022 (7)
C50.0167 (9)0.0162 (9)0.0163 (8)0.0016 (7)0.0013 (7)−0.0004 (7)
C60.0232 (10)0.0221 (10)0.0132 (8)0.0010 (8)0.0031 (7)−0.0003 (7)
C70.0244 (10)0.0198 (9)0.0131 (8)−0.0002 (8)0.0043 (7)0.0021 (7)
C80.0170 (9)0.0154 (9)0.0142 (8)0.0001 (7)0.0031 (7)0.0009 (6)
C90.0169 (9)0.0154 (9)0.0154 (8)0.0015 (7)0.0052 (7)0.0014 (7)
C100.0414 (13)0.0221 (10)0.0213 (10)−0.0069 (10)0.0011 (9)−0.0048 (8)
Cl10.0238 (3)0.0264 (3)0.0174 (2)0.00234 (19)0.00408 (19)−0.00095 (17)
O10.0653 (13)0.0319 (9)0.0272 (9)−0.0120 (9)−0.0067 (8)−0.0026 (7)
O20.0414 (10)0.0470 (10)0.0264 (8)0.0175 (8)0.0142 (7)−0.0006 (7)
O30.0293 (9)0.0441 (11)0.0529 (11)0.0024 (8)0.0183 (8)0.0112 (8)
O40.0429 (11)0.0393 (10)0.0317 (8)0.0102 (8)0.0081 (8)0.0129 (7)

Geometric parameters (Å, °)

N1—C21.334 (3)C4—C101.496 (3)
N1—C91.371 (2)C5—C91.408 (2)
N1—H10.891 (10)C5—C61.414 (3)
N2—C81.324 (2)C6—C71.365 (3)
N2—C91.342 (2)C6—H60.9300
N3—N3i1.249 (3)C7—C81.409 (2)
N3—C81.432 (2)C7—H70.9300
C1—C21.489 (3)C10—H10A0.9600
C1—H1A0.9600C10—H10B0.9600
C1—H1B0.9600C10—H10C0.9600
C1—H1C0.9600Cl1—O41.4329 (17)
C2—C31.400 (3)Cl1—O21.4348 (16)
C3—C41.370 (3)Cl1—O31.4423 (17)
C3—H30.9300Cl1—O11.4460 (17)
C4—C51.429 (3)
C2—N1—C9123.14 (16)C7—C6—H6120.4
C2—N1—H1121.3 (18)C5—C6—H6120.4
C9—N1—H1115.5 (18)C6—C7—C8118.79 (17)
C8—N2—C9115.72 (15)C6—C7—H7120.6
N3i—N3—C8113.16 (19)C8—C7—H7120.6
C2—C1—H1A109.5N2—C8—C7124.55 (17)
C2—C1—H1B109.5N2—C8—N3112.30 (15)
H1A—C1—H1B109.5C7—C8—N3123.16 (16)
C2—C1—H1C109.5N2—C9—N1115.66 (16)
H1A—C1—H1C109.5N2—C9—C5125.33 (16)
H1B—C1—H1C109.5N1—C9—C5119.01 (17)
N1—C2—C3118.89 (17)C4—C10—H10A109.5
N1—C2—C1118.73 (17)C4—C10—H10B109.5
C3—C2—C1122.37 (18)H10A—C10—H10B109.5
C4—C3—C2121.63 (18)C4—C10—H10C109.5
C4—C3—H3119.2H10A—C10—H10C109.5
C2—C3—H3119.2H10B—C10—H10C109.5
C3—C4—C5118.47 (17)O4—Cl1—O2110.72 (10)
C3—C4—C10121.09 (18)O4—Cl1—O3110.40 (11)
C5—C4—C10120.42 (17)O2—Cl1—O3108.64 (11)
C9—C5—C6116.46 (17)O4—Cl1—O1110.13 (11)
C9—C5—C4118.84 (17)O2—Cl1—O1109.81 (12)
C6—C5—C4124.70 (17)O3—Cl1—O1107.05 (12)
C7—C6—C5119.10 (17)
C9—N1—C2—C3−0.7 (3)C9—N2—C8—N3−177.58 (16)
C9—N1—C2—C1179.94 (19)C6—C7—C8—N2−2.1 (3)
N1—C2—C3—C41.0 (3)C6—C7—C8—N3177.69 (18)
C1—C2—C3—C4−179.7 (2)N3i—N3—C8—N2171.1 (2)
C2—C3—C4—C5−1.3 (3)N3i—N3—C8—C7−8.7 (3)
C2—C3—C4—C10176.8 (2)C8—N2—C9—N1178.50 (17)
C3—C4—C5—C91.3 (3)C8—N2—C9—C5−0.4 (3)
C10—C4—C5—C9−176.81 (19)C2—N1—C9—N2−178.19 (18)
C3—C4—C5—C6−179.40 (19)C2—N1—C9—C50.7 (3)
C10—C4—C5—C62.4 (3)C6—C5—C9—N2−1.6 (3)
C9—C5—C6—C71.7 (3)C4—C5—C9—N2177.76 (18)
C4—C5—C6—C7−177.61 (19)C6—C5—C9—N1179.63 (17)
C5—C6—C7—C80.0 (3)C4—C5—C9—N1−1.1 (3)
C9—N2—C8—C72.2 (3)

Symmetry codes: (i) −x+1, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.89 (1)2.08 (2)2.907 (2)154
N1—H1···O3ii0.89 (1)2.56 (2)3.277 (3)138

Symmetry codes: (ii) x+1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2501).

References

  • Baker, R. S. & Norman, R. E. (2004). Acta Cryst. E60, m1761–m1763.
  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ferrarini, P. L., Mori, C., Badawneh, M., Manera, C., Martinelli, A., Miceli, M., Ramagnoli, F. & Saccomanni, G. (1997). J. Heterocycl. Chem.34, 1501–1504.
  • Gavrilova, E. L. & Bosnich, B. (2004). Chem. Rev.104, 349–383. [PubMed]
  • Sheldrick, G. M. (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stadie, N. P., Sanchez-Smith, R. & Groy, T. L. (2007). Acta Cryst. E63, m2153–m2154.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography