PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m824–m825.
Published online 2009 June 27. doi:  10.1107/S1600536809022053
PMCID: PMC2969276

Hydroxonium creatininium bis­(pyridine-2,6-dicarboxyl­ato-κ3 O 2,N,O 6)nickel­ate(II) trihydrate

Abstract

The title compound, (C4H8N3O)(H3O)[Ni(C7H3NO4)2]·3H2O, exhibits isotypism with its CoII analogue. All intramolecular distances and angles are similar for the two structures. This applies also for the intermolecular forces, consisting of O—H(...)O and N—H(...)O hydrogen bonds and π–π interactions [with centroid–centroid distances of 3.428 (2) and 3.579 (2) Å], that lead to a cohesion of the structure.

Related literature

For background to proton-transfer agents, see: Aghabozorg, Manteghi et al. (2008 [triangle]); Soleimannejad et al. (2005 [triangle]); Aghabozorg, Ramezanipour et al. (2008 [triangle]). For related structures, see: Moghimi et al. (2004 [triangle], 2005 [triangle]); Aghabozorg, Motyeian et al. (2008 [triangle]); Aghabozorg, Derikvand et al. (2008 [triangle]). For the isotypic Co compound, see: Aghabozorg et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m824-scheme1.jpg

Experimental

Crystal data

  • (C4H8N3O)(H3O)[Ni(C7H3NO4)2]·3H2O
  • M r = 576.12
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m824-efi1.jpg
  • a = 8.1466 (9) Å
  • b = 10.7420 (12) Å
  • c = 13.5061 (15) Å
  • α = 74.890 (2)°
  • β = 89.944 (2)°
  • γ = 87.564 (3)°
  • V = 1140.0 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.93 mm−1
  • T = 120 K
  • 0.18 × 0.14 × 0.12 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.803, T max = 0.896
  • 11509 measured reflections
  • 5404 independent reflections
  • 3827 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.134
  • S = 1.00
  • 5404 reflections
  • 335 parameters
  • H-atom parameters constrained
  • Δρmax = 0.84 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT-Plus (Bruker, 1998 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022053/pv2161sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022053/pv2161Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Two proton transfer compounds have been prepared from creatinine as proton acceptor agent by using pyridine-2,6-dicarboxylic acid (pydcH2) (Moghimi et al., 2004) and 1,10-phenanthroline-9,13-dicarboxylic acid (phendcH2) (Soleimannejad et al., 2005) as proton donor agents. Also three complexes of BiIII (Aghabozorg, Ramezanipour et al., 2008), ZnII (Moghimi et al., 2005) and CrIII (Aghabozorg, Derikvand et al., 2008) have been reported by our research group in which the (creatH)+ fragment was a part of the the crystal structure; more details can be found in our recently published review article (Aghabozorg, Manteghi et al., 2008). We have now synthesized a novel NiII complex, (I), and determined its crystal structure which is presented in this article.

The crystal structure of the title complex, (I), (Fig. 1) contains [Ni(pydc)2]2–, creatininium (creatH)+ as counter-ion, hydroxonium cation, (H3O)+ and three uncoordinated water molecules. The NiII atom is coordinated by two tridentate (pydc)2– groups and the presence of (creatH)+ and (H3O)+ ions balance the negative charge. In the structure of (I), the mean Ni—N and Ni—O bond distances are 1.973 (3) and 2.140 (2) Å, respectively, which are consistent with the corresponding distances reported for similar NiII complexes (Aghabozorg, Motyeian et al., 2008). The N-atoms (N1 and N2) of the two (pydc)2– fragments occupy the axial positions, while O1, O3, O5 and O7 atoms form the equatorial plane. In the anionic complex, the N1—Ni1—N2 angle [174.74 (11)°] deviates slightly from linearity. Therefore, the coordination around the NiII atom is distorted octahedral. In addition, the O1—Ni1—O3 and O5—Ni1—O7 angles [155.14 (9) and 155.22 (9)°] indicate that the four carboxylate groups of the two dianions are oriented in a flattened tetrahedral arrangement around the NiII atom. The angles O1—Ni1—O5, O1—Ni1—O7, O3—Ni1—O5 and O3—Ni1—O7 are 96.01 (9), 89.16 (9), 89.63 (9) and 95.81 (9)°, respectively. On the other hand, the torsion angles O1—Ni1—O7—C14 and O5—Ni1—O3—C7 are 93.3 (2) and 93.6 (2)°, respectively, indicating that two (pydc)2– units are almost perpendicular to each other. The angle between two planes passing aromatic rings of (pydc)2– units is 81.13 (15)°.

A remarkable feature of the title compound is the presence of a large number of O—H···O, N—H···O and C—H···O hydrogen bonds, with D···A distances ranging from 2.480 (3) to 3.415 (4) Å between (creatH)+, (H3O)+ and [Ni(pydc)2]2– fragments and uncoordinated water molecules. The O2W—O2WB···O4iii hydrogen bond with D···A distance of 2.480 (3) Å, is the strongest (details of the hydrogen bonding geometry have been provided in Table 1). These interactions link the fragments to form a three-dimensional network as shown in Fig. 2. In the structure of (I), the space between two layers of [Ni(pydc)2]2– anions is filled with layers of (creatH)+, (H3O)+ cations and uncoordinated water molecules (Fig. 2).

There is noticeable π-π stacking interaction between two aromatic rings of (pydc)2– units, with distances 3.428 (2) Å (1 - x, -y, -z + 1) and 3.579 (2) Å (-x, -y, -z). Also a considerable centrosymmetric C═O···π stacking interactions between C═O groups of carboxylate fragments with aromatic rings of pyridine-2,6-dicarboxylate with distance of 3.488 (1) Å for C═O2···Cg1 (1 - x, -y, -z) [Cg1 is the centroid for N1/C1—C5 ring] are observed in (I) (Fig. 3).

Experimental

The reaction of nickel(II) chloride hexahydrate (59 mg, 0.25 mmol), creatinine, creat, (57 mg, 0.5 mmol) and pyridine-2,6-dicarboxylic acid, pydcH2, (83 mg, 0.5 mmol) in a 1:2:2 molar ratio in aqueous solution resulted in the formation of green, (H3O)(creatH)[Ni(pydc)2]. 3H2O crystals.

Refinement

The H atoms of water molecules, NH and NH2 groups were located in difference Fourier synthesis. All hydrogen atoms were included in the refinement in isotropic approximatiom in riding model with distances: N—H (at positions from difference map), C—H = 0.95 (aryl), 0.98 (methyl), 0.99 (methylene) and O—H = 0.85 Å, and the Uiso(H) parameters equal to 1.2 Ueq(C), 1.5 Ueq(O,N), where U(C,O,N) are respectively the equivalent thermal parameters of the C, O and N atoms to which corresponding H atoms were bonded.

Figures

Fig. 1.
The molecular structure of the title compound, thermal ellipsoids are shown at 50% probability level.
Fig. 2.
Unit cell packing diagram of the title compound, hydrogen bonds are shown as dashed lines and H-atoms not involved in H-bonds have been excluded.
Fig. 3.
π-π Stacking interaction between two aromatic rings of (pydc)2– units.

Crystal data

(C4H8N3O)(H3O)[Ni(C7H3NO4)2]·3H2OZ = 2
Mr = 576.12F(000) = 596
Triclinic, P1Dx = 1.678 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1466 (9) ÅCell parameters from 1838 reflections
b = 10.7420 (12) Åθ = 2.8–24.2°
c = 13.5061 (15) ŵ = 0.93 mm1
α = 74.890 (2)°T = 120 K
β = 89.944 (2)°Prism, green
γ = 87.564 (3)°0.18 × 0.14 × 0.12 mm
V = 1140.0 (2) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer5404 independent reflections
Radiation source: fine-focus sealed tube3827 reflections with I > 2σ(I)
graphiteRint = 0.046
ω scansθmax = 28.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −10→10
Tmin = 0.803, Tmax = 0.896k = −14→14
11509 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: mixed
wR(F2) = 0.134H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0405P)2 + 2.37P] where P = (Fo2 + 2Fc2)/3
5404 reflections(Δ/σ)max = 0.001
335 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.26883 (5)0.07342 (4)0.22939 (3)0.01905 (13)
O10.4241 (3)−0.0881 (2)0.23014 (17)0.0225 (5)
O20.4819 (3)−0.2302 (2)0.13848 (18)0.0245 (5)
O30.0829 (3)0.2229 (2)0.16633 (17)0.0211 (5)
O4−0.0572 (3)0.3100 (2)0.01983 (17)0.0254 (5)
O50.4573 (3)0.2152 (2)0.18788 (17)0.0220 (5)
O60.6101 (3)0.3404 (2)0.25748 (18)0.0271 (5)
O70.1100 (3)−0.0493 (2)0.33115 (17)0.0228 (5)
O80.0881 (3)−0.1386 (2)0.50037 (18)0.0271 (5)
N10.2282 (3)0.0494 (2)0.0918 (2)0.0165 (5)
N20.3261 (3)0.1077 (2)0.3616 (2)0.0161 (5)
C10.3098 (4)−0.0458 (3)0.0640 (2)0.0175 (6)
C20.2950 (4)−0.0601 (3)−0.0352 (2)0.0201 (7)
H2A0.3515−0.1291−0.05470.024*
C30.1952 (4)0.0295 (3)−0.1048 (3)0.0221 (7)
H3A0.18420.0227−0.17320.027*
C40.1118 (4)0.1285 (3)−0.0749 (2)0.0208 (7)
H4A0.04400.1904−0.12210.025*
C50.1297 (4)0.1347 (3)0.0252 (2)0.0174 (6)
C60.4140 (4)−0.1286 (3)0.1508 (2)0.0189 (7)
C70.0456 (4)0.2315 (3)0.0738 (2)0.0203 (7)
C80.4375 (4)0.1947 (3)0.3651 (2)0.0175 (6)
C90.4809 (4)0.2192 (3)0.4569 (2)0.0207 (7)
H9A0.56070.28030.45910.025*
C100.4039 (4)0.1512 (3)0.5470 (2)0.0212 (7)
H10A0.42910.16710.61120.025*
C110.2910 (4)0.0610 (3)0.5404 (2)0.0220 (7)
H11A0.23830.01340.60030.026*
C120.2554 (4)0.0409 (3)0.4455 (2)0.0168 (6)
C130.5092 (4)0.2559 (3)0.2620 (2)0.0202 (7)
C140.1407 (4)−0.0569 (3)0.4255 (2)0.0193 (7)
O90.7005 (3)0.4732 (2)0.46109 (18)0.0300 (6)
N30.8635 (3)0.5880 (3)0.5417 (2)0.0186 (6)
H3N0.90980.63280.48860.028*
N40.7837 (3)0.5199 (3)0.7029 (2)0.0202 (6)
N50.9931 (3)0.6668 (3)0.6669 (2)0.0213 (6)
H5NB0.98620.69050.72860.032*
H5NA1.03880.72170.62170.032*
C150.7458 (4)0.5019 (3)0.5378 (3)0.0217 (7)
C160.8858 (4)0.5953 (3)0.6403 (2)0.0185 (6)
C170.6828 (4)0.4533 (3)0.6458 (3)0.0226 (7)
H17A0.56470.47710.64990.027*
H17B0.69960.35850.67100.027*
C180.7939 (5)0.4855 (4)0.8144 (3)0.0288 (8)
H18A0.81370.56270.83760.043*
H18B0.88440.42140.83760.043*
H18C0.69040.44910.84290.043*
O1W0.9969 (3)0.7014 (2)0.35667 (18)0.0257 (5)
H1WA0.90860.69780.32430.038*
H1WB1.02060.78040.33980.038*
O2W0.7807 (3)0.4512 (2)0.10606 (19)0.0310 (6)
H2WA0.72670.39960.15170.046*
H2WB0.82080.40060.07230.046*
H2WC0.73600.51020.05800.046*
O3W0.7459 (3)0.6405 (3)0.2550 (2)0.0385 (7)
H3WA0.71880.57340.30000.058*
H3WB0.65640.68110.23160.058*
O4W0.6023 (4)0.6403 (3)0.0074 (2)0.0454 (8)
H4WA0.55920.69190.03930.068*
H4WB0.59640.6694−0.05740.068*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0227 (2)0.0187 (2)0.0156 (2)−0.00178 (16)−0.00045 (16)−0.00419 (16)
O10.0295 (13)0.0209 (12)0.0176 (11)0.0012 (10)0.0011 (10)−0.0064 (9)
O20.0315 (13)0.0208 (12)0.0220 (12)0.0086 (10)−0.0026 (10)−0.0087 (10)
O30.0254 (12)0.0215 (12)0.0168 (11)0.0008 (10)0.0001 (9)−0.0062 (9)
O40.0287 (13)0.0262 (13)0.0193 (12)0.0074 (10)−0.0034 (10)−0.0040 (10)
O50.0249 (12)0.0263 (12)0.0155 (11)−0.0045 (10)0.0021 (9)−0.0060 (9)
O60.0306 (14)0.0279 (13)0.0220 (12)−0.0110 (11)0.0015 (10)−0.0038 (10)
O70.0294 (13)0.0204 (12)0.0186 (12)−0.0068 (10)0.0023 (10)−0.0042 (9)
O80.0349 (14)0.0231 (12)0.0222 (12)−0.0078 (11)0.0060 (10)−0.0027 (10)
N10.0151 (13)0.0140 (12)0.0186 (13)−0.0019 (10)0.0003 (10)−0.0009 (10)
N20.0170 (13)0.0132 (12)0.0167 (13)0.0031 (10)0.0000 (10)−0.0023 (10)
C10.0153 (15)0.0184 (15)0.0193 (16)−0.0025 (12)0.0014 (12)−0.0058 (12)
C20.0194 (16)0.0195 (16)0.0226 (17)−0.0040 (13)0.0014 (13)−0.0071 (13)
C30.0268 (18)0.0234 (17)0.0170 (16)−0.0025 (14)−0.0039 (13)−0.0065 (13)
C40.0216 (17)0.0204 (16)0.0178 (16)−0.0010 (13)−0.0030 (13)−0.0002 (12)
C50.0180 (16)0.0158 (15)0.0178 (15)−0.0031 (12)0.0026 (12)−0.0031 (12)
C60.0182 (16)0.0195 (16)0.0187 (16)−0.0032 (13)0.0012 (12)−0.0039 (13)
C70.0229 (17)0.0175 (15)0.0188 (16)0.0005 (13)−0.0011 (13)−0.0019 (12)
C80.0146 (15)0.0129 (14)0.0233 (16)0.0017 (12)0.0007 (12)−0.0021 (12)
C90.0204 (16)0.0193 (16)0.0216 (16)0.0027 (13)−0.0028 (13)−0.0046 (13)
C100.0263 (18)0.0221 (16)0.0157 (15)0.0054 (14)−0.0040 (13)−0.0066 (13)
C110.0242 (17)0.0226 (17)0.0164 (16)0.0071 (14)0.0006 (13)−0.0012 (13)
C120.0148 (15)0.0151 (15)0.0193 (16)0.0040 (12)0.0008 (12)−0.0032 (12)
C130.0204 (16)0.0196 (16)0.0195 (16)0.0003 (13)0.0004 (13)−0.0030 (13)
C140.0180 (16)0.0168 (15)0.0232 (17)0.0015 (12)0.0016 (13)−0.0055 (13)
O90.0341 (14)0.0351 (14)0.0227 (13)−0.0115 (12)−0.0032 (11)−0.0094 (11)
N30.0211 (14)0.0209 (14)0.0132 (13)−0.0024 (11)0.0022 (10)−0.0035 (10)
N40.0246 (15)0.0185 (13)0.0165 (13)−0.0040 (11)0.0016 (11)−0.0021 (11)
N50.0267 (15)0.0225 (14)0.0140 (13)−0.0018 (12)−0.0001 (11)−0.0034 (11)
C150.0211 (16)0.0188 (16)0.0241 (17)−0.0007 (13)−0.0012 (13)−0.0037 (13)
C160.0199 (16)0.0165 (15)0.0179 (16)0.0050 (12)0.0009 (12)−0.0032 (12)
C170.0220 (17)0.0231 (17)0.0220 (17)−0.0050 (14)−0.0002 (13)−0.0043 (13)
C180.040 (2)0.0268 (18)0.0181 (17)−0.0089 (16)0.0017 (15)−0.0015 (14)
O1W0.0261 (13)0.0248 (13)0.0248 (13)−0.0066 (10)−0.0014 (10)−0.0034 (10)
O2W0.0373 (15)0.0255 (13)0.0266 (13)0.0023 (11)0.0072 (11)−0.0013 (11)
O3W0.0363 (16)0.0365 (15)0.0345 (15)−0.0107 (12)−0.0101 (12)0.0067 (12)
O4W0.082 (2)0.0346 (15)0.0169 (13)0.0270 (15)−0.0012 (13)−0.0065 (11)

Geometric parameters (Å, °)

Ni1—N11.972 (3)C10—C111.384 (5)
Ni1—N21.974 (3)C10—H10A0.9500
Ni1—O12.101 (2)C11—C121.387 (4)
Ni1—O72.121 (2)C11—H11A0.9500
Ni1—O32.163 (2)C12—C141.511 (4)
Ni1—O52.178 (2)O9—C151.218 (4)
O1—C61.262 (4)N3—C161.368 (4)
O2—C61.252 (4)N3—C151.370 (4)
O3—C71.265 (4)N3—H3N0.8511
O4—C71.251 (4)N4—C161.327 (4)
O5—C131.272 (4)N4—C181.455 (4)
O6—C131.240 (4)N4—C171.457 (4)
O7—C141.280 (4)N5—C161.298 (4)
O8—C141.243 (4)N5—H5NB0.9334
N1—C11.330 (4)N5—H5NA0.8300
N1—C51.342 (4)C15—C171.512 (5)
N2—C121.320 (4)C17—H17A0.9900
N2—C81.340 (4)C17—H17B0.9900
C1—C21.394 (4)C18—H18A0.9800
C1—C61.509 (4)C18—H18B0.9800
C2—C31.391 (5)C18—H18C0.9800
C2—H2A0.9500O1W—H1WA0.8500
C3—C41.385 (5)O1W—H1WB0.8500
C3—H3A0.9500O2W—H2WA0.8499
C4—C51.379 (4)O2W—H2WB0.8500
C4—H4A0.9500O2W—H2WC0.8500
C5—C71.509 (4)O3W—H3WA0.8500
C8—C91.382 (5)O3W—H3WB0.8500
C8—C131.505 (4)O4W—H4WA0.8500
C9—C101.408 (5)O4W—H4WB0.8500
C9—H9A0.9500
N1—Ni1—N2174.74 (11)C8—C9—H9A120.8
N1—Ni1—O178.05 (10)C10—C9—H9A120.8
N2—Ni1—O1101.80 (10)C11—C10—C9118.8 (3)
N1—Ni1—O7106.74 (10)C11—C10—H10A120.6
N2—Ni1—O778.49 (10)C9—C10—H10A120.6
O1—Ni1—O789.16 (9)C10—C11—C12119.3 (3)
N1—Ni1—O377.19 (9)C10—C11—H11A120.3
N2—Ni1—O3103.06 (9)C12—C11—H11A120.3
O1—Ni1—O3155.14 (9)N2—C12—C11121.0 (3)
O7—Ni1—O395.81 (9)N2—C12—C14112.9 (3)
N1—Ni1—O598.03 (9)C11—C12—C14126.1 (3)
N2—Ni1—O576.74 (10)O6—C13—O5126.9 (3)
O1—Ni1—O596.01 (9)O6—C13—C8117.6 (3)
O7—Ni1—O5155.22 (9)O5—C13—C8115.5 (3)
O3—Ni1—O589.63 (9)O8—C14—O7125.9 (3)
C6—O1—Ni1114.6 (2)O8—C14—C12118.2 (3)
C7—O3—Ni1113.8 (2)O7—C14—C12115.9 (3)
C13—O5—Ni1114.4 (2)C16—N3—C15110.3 (3)
C14—O7—Ni1112.9 (2)C16—N3—H3N126.5
C1—N1—C5121.1 (3)C15—N3—H3N123.1
C1—N1—Ni1118.9 (2)C16—N4—C18125.2 (3)
C5—N1—Ni1119.8 (2)C16—N4—C17110.3 (3)
C12—N2—C8121.4 (3)C18—N4—C17123.3 (3)
C12—N2—Ni1118.5 (2)C16—N5—H5NB122.1
C8—N2—Ni1120.1 (2)C16—N5—H5NA119.2
N1—C1—C2120.9 (3)H5NB—N5—H5NA111.9
N1—C1—C6111.8 (3)O9—C15—N3125.8 (3)
C2—C1—C6127.3 (3)O9—C15—C17127.5 (3)
C3—C2—C1118.1 (3)N3—C15—C17106.7 (3)
C3—C2—H2A120.9N5—C16—N4125.9 (3)
C1—C2—H2A120.9N5—C16—N3123.6 (3)
C4—C3—C2120.3 (3)N4—C16—N3110.6 (3)
C4—C3—H3A119.8N4—C17—C15102.1 (3)
C2—C3—H3A119.8N4—C17—H17A111.3
C5—C4—C3118.3 (3)C15—C17—H17A111.3
C5—C4—H4A120.9N4—C17—H17B111.3
C3—C4—H4A120.9C15—C17—H17B111.3
N1—C5—C4121.3 (3)H17A—C17—H17B109.2
N1—C5—C7112.1 (3)N4—C18—H18A109.5
C4—C5—C7126.6 (3)N4—C18—H18B109.5
O2—C6—O1125.8 (3)H18A—C18—H18B109.5
O2—C6—C1118.1 (3)N4—C18—H18C109.5
O1—C6—C1116.1 (3)H18A—C18—H18C109.5
O4—C7—O3126.4 (3)H18B—C18—H18C109.5
O4—C7—C5117.0 (3)H1WA—O1W—H1WB105.5
O3—C7—C5116.6 (3)H2WA—O2W—H2WB101.4
N2—C8—C9121.1 (3)H2WA—O2W—H2WC123.5
N2—C8—C13113.2 (3)H2WB—O2W—H2WC100.7
C9—C8—C13125.7 (3)H3WA—O3W—H3WB106.0
C8—C9—C10118.4 (3)H4WA—O4W—H4WB113.1
N1—Ni1—O1—C6−3.8 (2)Ni1—O1—C6—O2−172.4 (3)
N2—Ni1—O1—C6−178.4 (2)Ni1—O1—C6—C17.4 (3)
O7—Ni1—O1—C6103.5 (2)N1—C1—C6—O2171.8 (3)
O3—Ni1—O1—C61.4 (4)C2—C1—C6—O2−8.7 (5)
O5—Ni1—O1—C6−100.8 (2)N1—C1—C6—O1−8.1 (4)
N1—Ni1—O3—C7−4.7 (2)C2—C1—C6—O1171.5 (3)
N2—Ni1—O3—C7169.9 (2)Ni1—O3—C7—O4−179.7 (3)
O1—Ni1—O3—C7−10.0 (4)Ni1—O3—C7—C52.4 (3)
O7—Ni1—O3—C7−110.6 (2)N1—C5—C7—O4−175.4 (3)
O5—Ni1—O3—C793.6 (2)C4—C5—C7—O44.0 (5)
N1—Ni1—O5—C13178.0 (2)N1—C5—C7—O32.7 (4)
N2—Ni1—O5—C13−2.5 (2)C4—C5—C7—O3−177.9 (3)
O1—Ni1—O5—C13−103.3 (2)C12—N2—C8—C9−1.0 (4)
O7—Ni1—O5—C13−2.2 (4)Ni1—N2—C8—C9−179.2 (2)
O3—Ni1—O5—C13101.0 (2)C12—N2—C8—C13177.3 (3)
N1—Ni1—O7—C14170.5 (2)Ni1—N2—C8—C13−1.0 (3)
N2—Ni1—O7—C14−8.9 (2)N2—C8—C9—C10−0.6 (5)
O1—Ni1—O7—C1493.3 (2)C13—C8—C9—C10−178.7 (3)
O3—Ni1—O7—C14−111.1 (2)C8—C9—C10—C111.4 (5)
O5—Ni1—O7—C14−9.3 (4)C9—C10—C11—C12−0.7 (5)
O1—Ni1—N1—C1−1.0 (2)C8—N2—C12—C111.8 (4)
O7—Ni1—N1—C1−86.4 (2)Ni1—N2—C12—C11−179.9 (2)
O3—Ni1—N1—C1−178.7 (2)C8—N2—C12—C14−176.9 (3)
O5—Ni1—N1—C193.5 (2)Ni1—N2—C12—C141.4 (3)
O1—Ni1—N1—C5−175.6 (2)C10—C11—C12—N2−0.9 (5)
O7—Ni1—N1—C598.9 (2)C10—C11—C12—C14177.5 (3)
O3—Ni1—N1—C56.6 (2)Ni1—O5—C13—O6−176.5 (3)
O5—Ni1—N1—C5−81.1 (2)Ni1—O5—C13—C82.8 (3)
O1—Ni1—N2—C12−83.0 (2)N2—C8—C13—O6178.0 (3)
O7—Ni1—N2—C123.6 (2)C9—C8—C13—O6−3.9 (5)
O3—Ni1—N2—C1297.0 (2)N2—C8—C13—O5−1.3 (4)
O5—Ni1—N2—C12−176.5 (2)C9—C8—C13—O5176.8 (3)
O1—Ni1—N2—C895.3 (2)Ni1—O7—C14—O8−165.9 (3)
O7—Ni1—N2—C8−178.0 (2)Ni1—O7—C14—C1212.2 (3)
O3—Ni1—N2—C8−84.7 (2)N2—C12—C14—O8168.8 (3)
O5—Ni1—N2—C81.8 (2)C11—C12—C14—O8−9.8 (5)
C5—N1—C1—C2−0.3 (4)N2—C12—C14—O7−9.5 (4)
Ni1—N1—C1—C2−174.8 (2)C11—C12—C14—O7171.9 (3)
C5—N1—C1—C6179.3 (3)C16—N3—C15—O9−178.9 (3)
Ni1—N1—C1—C64.8 (3)C16—N3—C15—C172.2 (4)
N1—C1—C2—C31.3 (5)C18—N4—C16—N5−11.9 (5)
C6—C1—C2—C3−178.2 (3)C17—N4—C16—N5−179.3 (3)
C1—C2—C3—C4−0.9 (5)C18—N4—C16—N3167.9 (3)
C2—C3—C4—C5−0.5 (5)C17—N4—C16—N30.5 (4)
C1—N1—C5—C4−1.2 (5)C15—N3—C16—N5178.1 (3)
Ni1—N1—C5—C4173.3 (2)C15—N3—C16—N4−1.8 (4)
C1—N1—C5—C7178.2 (3)C16—N4—C17—C150.8 (3)
Ni1—N1—C5—C7−7.3 (3)C18—N4—C17—C15−166.9 (3)
C3—C4—C5—N11.6 (5)O9—C15—C17—N4179.4 (3)
C3—C4—C5—C7−177.8 (3)N3—C15—C17—N4−1.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3N···O1W0.851.892.726 (4)166
N5—H5NB···O3i0.931.962.861 (4)162
N5—H5NA···O8ii0.831.972.777 (4)165
O1W—H1WA···O3W0.851.842.662 (3)162
O1W—H1WB···O7ii0.851.972.804 (3)166
O2W—H2WA···O60.851.712.529 (3)161
O2W—H2WB···O4iii0.851.652.480 (3)165
O2W—H2WC···O4W0.851.732.521 (3)155
O3W—H3WA···O90.852.172.926 (4)148
O3W—H3WB···O2iv0.851.942.765 (4)162
O4W—H4WA···O2iv0.851.852.682 (4)165
O4W—H4WB···O5v0.851.912.722 (4)159

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x, y+1, z; (v) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2161).

References

  • Aghabozorg, H., Derikvand, Z., Attar Gharamaleki, J. & Yousefi, M. (2009). Acta Cryst. E65, m826–m827. [PMC free article] [PubMed]
  • Aghabozorg, H., Derikvand, Z., Olmstead, M. M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, m1234–m1235. [PMC free article] [PubMed]
  • Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc.5, 184–227.
  • Aghabozorg, H., Motyeian, E., Attar Gharamaleki, J., Soleimannejad, J., Ghadermazi, M. & Spey Sharon, E. (2008). Acta Cryst E64, m144–m145.
  • Aghabozorg, H., Ramezanipour, F., Soleimannejad, J., Sharif, M. A., Shokrollahi, A., Shamsipur, M., Moghimi, A., Attar Gharamaleki, J., Lippolis, V. & Blake, A. J. (2008). Pol. J. Chem 82, 487–507.
  • Bruker (1998). SMART, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Moghimi, A., Sharif, M. A. & Aghabozorg, H. (2004). Acta Cryst. E60, o1790–o1792.
  • Moghimi, A., Sharif, M. A., Shokrollahi, A., Shamsipur, M. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem.631, 902-908.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soleimannejad, J., Sharif, M. A., Sheshmani, S., Alizadeh, R., Moghimi, A. & Aghabozorg, H. (2005). Anal. Sci 21, x49–x50.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography