PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1481.
Published online 2009 June 6. doi:  10.1107/S1600536809020315
PMCID: PMC2969270

tert-Butyl N-hydr­oxy-N-[(1S*,2R*)-2-(1-naphth­yl)cyclo­pent-3-en-1-yl]carbamate

Abstract

The relative stereochemistry of the title compound, C20H23NO3, was established by X-ray analysis. The asymmetric unit contains two independent mol­ecules. In the crystal structure, each type of mol­ecule forms a centrosymmetric dimer via pairs of inter­molecular O—H(...)O hydrogen bonds, resulting in an R 2 2(10) loop in each case.

Related literature

For hydrogen-bond graph sets, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1481-scheme1.jpg

Experimental

Crystal data

  • C20H23NO3
  • M r = 325.39
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1481-efi1.jpg
  • a = 8.4710 (5) Å
  • b = 8.4880 (4) Å
  • c = 26.1836 (12) Å
  • α = 95.980 (3)°
  • β = 95.419 (2)°
  • γ = 111.960 (2)°
  • V = 1718.32 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 150 K
  • 0.22 × 0.18 × 0.14 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1995 [triangle]) T min = 0.918, T max = 0.989
  • 10769 measured reflections
  • 6622 independent reflections
  • 4089 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.167
  • S = 1.10
  • 6622 reflections
  • 448 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: COLLECT (Nonius, 2002 [triangle]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020315/hb2980sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020315/hb2980Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to acknowledge NSERC Canada and the University of Toronto for funding.

supplementary crystallographic information

Comment

We have recently studied the addition of aryl groups to a 3-aza-2-oxabicyclo[2.2.1]hept-5-ene system using a [Rh(COD)Cl]2 (COD = cyclooctadiene) catalyst. The reaction produces two stereoisomers, the absolute stereochemistry of the title major isomer,(I), was determined by single-crystal X-ray diffraction.

The asymmetric unit of (I) contains two independent molecules [A and B] which are shown in Figs 1 and 2. In the crystal structure, each type of molecule is linked into a centrosymmetric dimer via intermolecular O—H···O hydrogen bonds (Fig. 3). Each dimer forms a R22(10) graph set (Bernstein et al., 1995).

Experimental

3-aza-2-oxabicyclo[2.2.1]hept-5-ene (I) (see Fig. 4) (99.4 mg, 0.504 mmol) and 1-napthalene boronic acid (103.1 mg, 0.599 mmol) were weighed into a dry vial and purged with nitrogen. Dried MeOH (2.3 ml) was measured out into a dry vial and purged with nitrogen. Inside an inert atmosphere (Ar) dry box, [Rh(COD)Cl]2 (15.6 mg, 0.031 mmol) and (±)-BINAP (41.0 mg, 0.066 mmol) were weighed out and dissolved in methanol (1.0 ml), and stirred for 30 minutes. NaHCO3 (85.4 mg, 1.03 mmol) was added to the vial containing the bicyclic alkene and dissolved in MeOH (1.3 ml) and transferred to the vial with the catalyst. The reaction was heated to 333 K and stirred overnight. The crude product was purified using column chromatography (EtOAc:hexanes = 1:4) to give (II) as the major stereoisomer as an off white solid (58.1 mg, 0.179 mmol, 36%). Colourless blocks of (I) were grown from a solution of the title compound in dichloromethane/hexanes.

Refinement

H atoms bonded to C atoms were placed in calculated positions with C—H = 0.95–1.00 and they were included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl C atoms. H atoms bonded to O atoms were located in difference maps and refined independently with isotropic displacement parameters.

Figures

Fig. 1.
View of molecule A of (I): displacement ellipsoids are drawn at the 30% probabilty level.
Fig. 2.
View of molecule B of (I): displacement ellipsoids are drawn at the 30% probabilty level.
Fig. 3.
Part of the crystal structure with hydrogen bonds shown as dashed lines.
Fig. 4.
The synthetic scheme

Crystal data

C20H23NO3Z = 4
Mr = 325.39F(000) = 696
Triclinic, P1Dx = 1.258 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4710 (5) ÅCell parameters from 10769 reflections
b = 8.4880 (4) Åθ = 2.6–26.3°
c = 26.1836 (12) ŵ = 0.08 mm1
α = 95.980 (3)°T = 150 K
β = 95.419 (2)°Block, colourless
γ = 111.960 (2)°0.22 × 0.18 × 0.14 mm
V = 1718.32 (15) Å3

Data collection

Nonius KappaCCD diffractometer6622 independent reflections
Radiation source: fine-focus sealed tube4089 reflections with I > 2σ(I)
graphiteRint = 0.035
Detector resolution: 9 pixels mm-1θmax = 26.3°, θmin = 2.6°
[var phi] scans and ω scans with κ offsetsh = −10→10
Absorption correction: multi-scan (SORTAV; Blessing, 1995)k = −10→10
Tmin = 0.918, Tmax = 0.989l = −32→30
10769 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.167w = 1/[σ2(Fo2) + (0.0652P)2 + 0.4209P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
6622 reflectionsΔρmax = 0.33 e Å3
448 parametersΔρmin = −0.24 e Å3
0 restraintsExtinction correction: SHELXTL (Version 6.1; Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0086 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1A0.6043 (2)0.4234 (3)0.45322 (7)0.0357 (5)
H1OA0.632 (5)0.537 (5)0.4709 (13)0.077 (12)*
O2A0.1728 (2)0.2277 (2)0.39933 (6)0.0282 (4)
O3A0.2995 (2)0.2761 (2)0.48346 (7)0.0330 (5)
N1A0.4517 (3)0.3873 (3)0.41951 (8)0.0286 (5)
C1A0.4750 (3)0.3877 (3)0.36519 (10)0.0284 (6)
H20.36030.36180.34460.034*
C2A0.5993 (4)0.5614 (4)0.35413 (11)0.0401 (7)
H30.53800.63630.34550.048*
H40.69080.62170.38400.048*
C3A0.6710 (4)0.5081 (4)0.30832 (11)0.0417 (7)
H3A0.73190.58470.28640.050*
C4A0.6395 (4)0.3422 (4)0.30201 (11)0.0396 (7)
H4A0.67350.28550.27450.047*
C5A0.5439 (3)0.2528 (3)0.34302 (10)0.0297 (6)
H50.62800.24220.37050.036*
C6A0.4023 (3)0.0765 (3)0.32410 (9)0.0286 (6)
C7A0.3103 (4)0.0433 (4)0.27530 (10)0.0326 (7)
H60.33900.13030.25370.039*
C8A0.1752 (4)−0.1155 (4)0.25649 (10)0.0363 (7)
H70.1135−0.13420.22270.044*
C9A0.1323 (4)−0.2427 (4)0.28649 (11)0.0367 (7)
H80.0412−0.35000.27330.044*
C10A0.2221 (3)−0.2172 (3)0.33715 (10)0.0306 (6)
C11A0.1782 (4)−0.3471 (4)0.36895 (11)0.0372 (7)
H11A0.0884−0.45530.35580.045*
C12A0.2619 (4)−0.3208 (4)0.41804 (12)0.0406 (7)
H12A0.2302−0.40960.43890.049*
C13A0.3959 (4)−0.1609 (4)0.43766 (11)0.0374 (7)
H13A0.4550−0.14270.47180.045*
C14A0.4416 (4)−0.0323 (3)0.40817 (10)0.0312 (6)
H14A0.53120.07500.42230.037*
C15A0.3582 (3)−0.0552 (3)0.35665 (9)0.0280 (6)
C16A0.3056 (3)0.2920 (3)0.43773 (10)0.0268 (6)
C17A−0.0021 (3)0.1253 (3)0.40984 (9)0.0295 (6)
C18A−0.1061 (4)0.0807 (4)0.35615 (10)0.0396 (7)
H18A−0.09930.18660.34290.059*
H18B−0.22640.00990.35810.059*
H18C−0.05970.01670.33270.059*
C19A−0.0044 (4)−0.0364 (3)0.42982 (11)0.0375 (7)
H19A0.0770−0.00540.46190.056*
H19B0.0289−0.10490.40370.056*
H19C−0.1204−0.10360.43670.056*
C20A−0.0614 (4)0.2358 (4)0.44690 (11)0.0369 (7)
H20A0.01470.27100.48020.055*
H20B−0.17940.16940.45240.055*
H20C−0.05760.33810.43190.055*
O1B0.4907 (3)0.6687 (2)0.05737 (8)0.0385 (5)
H1OB0.557 (5)0.667 (5)0.0335 (13)0.071 (12)*
O2B0.3481 (2)0.2662 (2)0.09741 (6)0.0301 (4)
O3B0.3099 (2)0.3398 (2)0.01728 (7)0.0352 (5)
N1B0.4828 (3)0.5352 (3)0.08597 (8)0.0306 (5)
C1B0.5343 (3)0.5915 (3)0.14138 (10)0.0296 (6)
H100.52930.48850.15760.036*
C2B0.7184 (4)0.7273 (4)0.15626 (11)0.0381 (7)
H110.80360.67350.15960.046*
H120.74830.80800.13070.046*
C3B0.7070 (4)0.8157 (3)0.20804 (11)0.0380 (7)
H3B0.80400.88560.23280.046*
C4B0.5462 (4)0.7841 (3)0.21470 (11)0.0369 (7)
H130.51380.82840.24500.044*
C5B0.4195 (3)0.6695 (3)0.16871 (10)0.0310 (6)
H140.38830.74350.14570.037*
C6B0.2554 (3)0.5356 (3)0.18060 (10)0.0276 (6)
C7B0.2584 (4)0.4624 (4)0.22474 (10)0.0351 (7)
H150.36420.49700.24720.042*
C8B0.1108 (4)0.3382 (4)0.23788 (11)0.0394 (7)
H160.11740.28980.26870.047*
C9B−0.0427 (4)0.2871 (4)0.20617 (11)0.0404 (7)
H17−0.14290.20460.21550.049*
C10B−0.0543 (4)0.3553 (3)0.15974 (11)0.0349 (7)
C11B−0.2113 (4)0.2982 (4)0.12554 (12)0.0440 (8)
H11B−0.31220.21620.13480.053*
C12B−0.2198 (4)0.3590 (4)0.07978 (12)0.0459 (8)
H12B−0.32580.31790.05710.055*
C13B−0.0730 (4)0.4820 (4)0.06591 (11)0.0422 (8)
H13B−0.08030.52540.03410.051*
C14B0.0808 (4)0.5398 (4)0.09798 (10)0.0330 (7)
H14B0.17960.62180.08770.040*
C15B0.0967 (3)0.4806 (3)0.14624 (10)0.0292 (6)
C16B0.3713 (3)0.3763 (3)0.06313 (10)0.0286 (6)
C17B0.2321 (4)0.0831 (3)0.08300 (10)0.0312 (6)
C18B0.2446 (4)0.0185 (4)0.13454 (10)0.0426 (8)
H18D0.36360.03270.14540.064*
H18E0.1692−0.10340.13070.064*
H18F0.20910.08450.16080.064*
C19B0.0503 (4)0.0681 (4)0.06712 (11)0.0376 (7)
H19D0.01300.12250.09580.056*
H19E−0.0263−0.05350.05850.056*
H19F0.04630.12550.03670.056*
C20B0.2987 (4)−0.0052 (4)0.04207 (11)0.0381 (7)
H20D0.41690.00970.05460.057*
H20E0.29690.04550.01020.057*
H20F0.2255−0.12800.03490.057*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1A0.0266 (11)0.0377 (12)0.0348 (11)0.0093 (9)−0.0081 (9)−0.0052 (9)
O2A0.0224 (10)0.0306 (10)0.0256 (9)0.0043 (8)0.0011 (8)0.0027 (8)
O3A0.0349 (12)0.0330 (11)0.0258 (10)0.0084 (9)0.0014 (8)0.0020 (8)
N1A0.0230 (13)0.0302 (12)0.0263 (11)0.0061 (10)−0.0029 (10)−0.0014 (9)
C1A0.0262 (15)0.0256 (14)0.0287 (14)0.0057 (12)0.0013 (12)0.0023 (11)
C2A0.0356 (18)0.0331 (16)0.0432 (17)0.0037 (14)0.0048 (14)0.0074 (13)
C3A0.0304 (17)0.0429 (19)0.0475 (18)0.0056 (15)0.0090 (14)0.0191 (15)
C4A0.0335 (17)0.051 (2)0.0355 (16)0.0153 (15)0.0111 (13)0.0087 (14)
C5A0.0280 (15)0.0317 (15)0.0286 (14)0.0103 (13)0.0044 (12)0.0049 (12)
C6A0.0297 (16)0.0320 (15)0.0264 (14)0.0150 (13)0.0065 (12)0.0003 (12)
C7A0.0386 (17)0.0340 (16)0.0282 (14)0.0178 (14)0.0053 (13)0.0031 (12)
C8A0.0387 (18)0.0415 (18)0.0286 (15)0.0192 (15)−0.0006 (13)−0.0048 (13)
C9A0.0325 (17)0.0327 (16)0.0392 (16)0.0102 (14)0.0029 (13)−0.0074 (13)
C10A0.0328 (16)0.0265 (15)0.0338 (15)0.0138 (13)0.0059 (13)0.0002 (12)
C11A0.0404 (18)0.0241 (15)0.0459 (18)0.0119 (14)0.0068 (15)0.0020 (13)
C12A0.049 (2)0.0292 (16)0.0482 (18)0.0181 (15)0.0119 (16)0.0112 (14)
C13A0.0421 (18)0.0396 (17)0.0337 (15)0.0205 (15)0.0026 (13)0.0037 (13)
C14A0.0332 (16)0.0282 (15)0.0318 (15)0.0119 (13)0.0033 (12)0.0041 (12)
C15A0.0291 (16)0.0304 (15)0.0282 (14)0.0156 (13)0.0068 (12)0.0018 (12)
C16A0.0265 (15)0.0235 (14)0.0276 (15)0.0085 (12)−0.0004 (12)0.0004 (11)
C17A0.0230 (15)0.0308 (15)0.0284 (14)0.0042 (12)0.0030 (12)0.0020 (12)
C18A0.0299 (17)0.0461 (18)0.0353 (16)0.0081 (14)0.0022 (13)0.0021 (14)
C19A0.0388 (18)0.0296 (16)0.0397 (16)0.0078 (14)0.0090 (14)0.0035 (13)
C20A0.0299 (16)0.0363 (16)0.0429 (16)0.0115 (14)0.0085 (13)0.0013 (13)
O1B0.0491 (14)0.0319 (11)0.0389 (11)0.0159 (10)0.0155 (10)0.0143 (9)
O2B0.0367 (11)0.0238 (10)0.0248 (9)0.0076 (9)−0.0009 (8)0.0031 (8)
O3B0.0370 (12)0.0413 (12)0.0261 (10)0.0137 (10)0.0046 (9)0.0057 (8)
N1B0.0369 (14)0.0251 (12)0.0304 (12)0.0104 (11)0.0089 (11)0.0098 (10)
C1B0.0288 (15)0.0280 (15)0.0300 (14)0.0089 (13)0.0053 (12)0.0023 (12)
C2B0.0279 (16)0.0349 (16)0.0458 (17)0.0061 (13)0.0072 (13)0.0028 (14)
C3B0.0324 (17)0.0270 (15)0.0453 (17)0.0044 (13)0.0003 (14)−0.0021 (13)
C4B0.0405 (19)0.0273 (15)0.0360 (16)0.0086 (14)0.0044 (14)−0.0059 (12)
C5B0.0291 (16)0.0257 (15)0.0374 (15)0.0097 (13)0.0050 (12)0.0040 (12)
C6B0.0276 (15)0.0247 (14)0.0309 (14)0.0103 (12)0.0077 (12)0.0016 (11)
C7B0.0342 (17)0.0375 (17)0.0350 (16)0.0154 (14)0.0082 (13)0.0032 (13)
C8B0.046 (2)0.0403 (17)0.0395 (16)0.0207 (16)0.0191 (15)0.0131 (14)
C9B0.0358 (18)0.0336 (17)0.0531 (19)0.0122 (14)0.0190 (16)0.0054 (14)
C10B0.0296 (17)0.0305 (15)0.0434 (17)0.0112 (13)0.0093 (14)−0.0013 (13)
C11B0.0298 (17)0.0405 (18)0.058 (2)0.0112 (15)0.0101 (15)−0.0036 (16)
C12B0.0288 (18)0.053 (2)0.054 (2)0.0198 (16)−0.0016 (15)−0.0103 (17)
C13B0.042 (2)0.0512 (19)0.0394 (17)0.0276 (17)0.0021 (15)0.0004 (15)
C14B0.0312 (16)0.0338 (16)0.0363 (16)0.0154 (13)0.0066 (13)0.0031 (13)
C15B0.0282 (16)0.0256 (14)0.0352 (15)0.0126 (13)0.0070 (12)−0.0003 (12)
C16B0.0302 (16)0.0331 (16)0.0249 (14)0.0143 (13)0.0068 (12)0.0054 (12)
C17B0.0356 (17)0.0216 (14)0.0306 (14)0.0062 (13)0.0033 (12)−0.0006 (11)
C18B0.057 (2)0.0305 (16)0.0341 (16)0.0111 (15)0.0031 (15)0.0036 (13)
C19B0.0315 (17)0.0350 (16)0.0384 (16)0.0064 (14)0.0063 (13)−0.0050 (13)
C20B0.0380 (18)0.0313 (16)0.0429 (16)0.0133 (14)0.0045 (14)−0.0019 (13)

Geometric parameters (Å, °)

O1A—N1A1.405 (3)O1B—N1B1.407 (3)
O1A—H1OA0.96 (4)O1B—H1OB0.88 (3)
O2A—C16A1.337 (3)O2B—C16B1.337 (3)
O2A—C17A1.480 (3)O2B—C17B1.479 (3)
O3A—C16A1.223 (3)O3B—C16B1.222 (3)
N1A—C16A1.363 (3)N1B—C16B1.357 (3)
N1A—C1A1.454 (3)N1B—C1B1.450 (3)
C1A—C2A1.534 (4)C1B—C2B1.536 (4)
C1A—C5A1.554 (3)C1B—C5B1.553 (3)
C1A—H21.0000C1B—H101.0000
C2A—C3A1.497 (4)C2B—C3B1.509 (4)
C2A—H30.9900C2B—H110.9900
C2A—H40.9900C2B—H120.9900
C3A—C4A1.321 (4)C3B—C4B1.319 (4)
C3A—H3A0.9500C3B—H3B0.9500
C4A—C5A1.503 (4)C4B—C5B1.510 (4)
C4A—H4A0.9500C4B—H130.9500
C5A—C6A1.521 (4)C5B—C6B1.515 (4)
C5A—H51.0000C5B—H141.0000
C6A—C7A1.375 (4)C6B—C7B1.371 (4)
C6A—C15A1.436 (4)C6B—C15B1.431 (4)
C7A—C8A1.404 (4)C7B—C8B1.402 (4)
C7A—H60.9500C7B—H150.9500
C8A—C9A1.361 (4)C8B—C9B1.366 (4)
C8A—H70.9500C8B—H160.9500
C9A—C10A1.418 (4)C9B—C10B1.410 (4)
C9A—H80.9500C9B—H170.9500
C10A—C11A1.411 (4)C10B—C11B1.417 (4)
C10A—C15A1.427 (4)C10B—C15B1.428 (4)
C11A—C12A1.362 (4)C11B—C12B1.359 (4)
C11A—H11A0.9500C11B—H11B0.9500
C12A—C13A1.409 (4)C12B—C13B1.400 (4)
C12A—H12A0.9500C12B—H12B0.9500
C13A—C14A1.362 (4)C13B—C14B1.369 (4)
C13A—H13A0.9500C13B—H13B0.9500
C14A—C15A1.421 (4)C14B—C15B1.421 (4)
C14A—H14A0.9500C14B—H14B0.9500
C17A—C19A1.513 (4)C17B—C19B1.511 (4)
C17A—C18A1.517 (4)C17B—C20B1.514 (3)
C17A—C20A1.526 (3)C17B—C18B1.518 (4)
C18A—H18A0.9800C18B—H18D0.9800
C18A—H18B0.9800C18B—H18E0.9800
C18A—H18C0.9800C18B—H18F0.9800
C19A—H19A0.9800C19B—H19D0.9800
C19A—H19B0.9800C19B—H19E0.9800
C19A—H19C0.9800C19B—H19F0.9800
C20A—H20A0.9800C20B—H20D0.9800
C20A—H20B0.9800C20B—H20E0.9800
C20A—H20C0.9800C20B—H20F0.9800
N1A—O1A—H1OA104 (2)N1B—O1B—H1OB107 (2)
C16A—O2A—C17A120.66 (19)C16B—O2B—C17B121.51 (19)
C16A—N1A—O1A114.3 (2)C16B—N1B—O1B115.0 (2)
C16A—N1A—C1A125.8 (2)C16B—N1B—C1B125.7 (2)
O1A—N1A—C1A113.7 (2)O1B—N1B—C1B113.83 (19)
N1A—C1A—C2A113.2 (2)N1B—C1B—C2B114.0 (2)
N1A—C1A—C5A114.6 (2)N1B—C1B—C5B115.4 (2)
C2A—C1A—C5A105.8 (2)C2B—C1B—C5B105.2 (2)
N1A—C1A—H2107.7N1B—C1B—H10107.3
C2A—C1A—H2107.7C2B—C1B—H10107.3
C5A—C1A—H2107.7C5B—C1B—H10107.3
C3A—C2A—C1A101.8 (2)C3B—C2B—C1B101.4 (2)
C3A—C2A—H3111.4C3B—C2B—H11111.5
C1A—C2A—H3111.4C1B—C2B—H11111.5
C3A—C2A—H4111.4C3B—C2B—H12111.5
C1A—C2A—H4111.4C1B—C2B—H12111.5
H3—C2A—H4109.3H11—C2B—H12109.3
C4A—C3A—C2A112.1 (3)C4B—C3B—C2B111.8 (3)
C4A—C3A—H3A124.0C4B—C3B—H3B124.1
C2A—C3A—H3A124.0C2B—C3B—H3B124.1
C3A—C4A—C5A112.6 (2)C3B—C4B—C5B112.3 (2)
C3A—C4A—H4A123.7C3B—C4B—H13123.8
C5A—C4A—H4A123.7C5B—C4B—H13123.8
C4A—C5A—C6A115.7 (2)C4B—C5B—C6B116.6 (2)
C4A—C5A—C1A100.6 (2)C4B—C5B—C1B100.6 (2)
C6A—C5A—C1A113.1 (2)C6B—C5B—C1B113.5 (2)
C4A—C5A—H5109.0C4B—C5B—H14108.6
C6A—C5A—H5109.0C6B—C5B—H14108.6
C1A—C5A—H5109.0C1B—C5B—H14108.6
C7A—C6A—C15A118.9 (2)C7B—C6B—C15B118.8 (3)
C7A—C6A—C5A119.6 (2)C7B—C6B—C5B119.6 (2)
C15A—C6A—C5A121.5 (2)C15B—C6B—C5B121.6 (2)
C6A—C7A—C8A121.9 (3)C6B—C7B—C8B122.3 (3)
C6A—C7A—H6119.1C6B—C7B—H15118.9
C8A—C7A—H6119.1C8B—C7B—H15118.9
C9A—C8A—C7A120.2 (3)C9B—C8B—C7B119.8 (3)
C9A—C8A—H7119.9C9B—C8B—H16120.1
C7A—C8A—H7119.9C7B—C8B—H16120.1
C8A—C9A—C10A120.8 (3)C8B—C9B—C10B120.9 (3)
C8A—C9A—H8119.6C8B—C9B—H17119.5
C10A—C9A—H8119.6C10B—C9B—H17119.5
C11A—C10A—C9A121.6 (3)C9B—C10B—C11B121.4 (3)
C11A—C10A—C15A119.3 (2)C9B—C10B—C15B119.2 (3)
C9A—C10A—C15A119.1 (2)C11B—C10B—C15B119.4 (3)
C12A—C11A—C10A121.4 (3)C12B—C11B—C10B121.0 (3)
C12A—C11A—H11A119.3C12B—C11B—H11B119.5
C10A—C11A—H11A119.3C10B—C11B—H11B119.5
C11A—C12A—C13A119.6 (3)C11B—C12B—C13B120.3 (3)
C11A—C12A—H12A120.2C11B—C12B—H12B119.8
C13A—C12A—H12A120.2C13B—C12B—H12B119.8
C14A—C13A—C12A120.7 (3)C14B—C13B—C12B120.2 (3)
C14A—C13A—H13A119.7C14B—C13B—H13B119.9
C12A—C13A—H13A119.7C12B—C13B—H13B119.9
C13A—C14A—C15A121.4 (3)C13B—C14B—C15B121.8 (3)
C13A—C14A—H14A119.3C13B—C14B—H14B119.1
C15A—C14A—H14A119.3C15B—C14B—H14B119.1
C14A—C15A—C10A117.6 (2)C14B—C15B—C10B117.2 (3)
C14A—C15A—C6A123.3 (2)C14B—C15B—C6B123.6 (3)
C10A—C15A—C6A119.1 (2)C10B—C15B—C6B119.1 (2)
O3A—C16A—O2A126.1 (2)O3B—C16B—O2B125.9 (2)
O3A—C16A—N1A123.3 (2)O3B—C16B—N1B124.1 (2)
O2A—C16A—N1A110.4 (2)O2B—C16B—N1B109.9 (2)
O2A—C17A—C19A109.8 (2)O2B—C17B—C19B109.9 (2)
O2A—C17A—C18A101.86 (19)O2B—C17B—C20B110.5 (2)
C19A—C17A—C18A110.2 (2)C19B—C17B—C20B113.5 (2)
O2A—C17A—C20A109.7 (2)O2B—C17B—C18B100.9 (2)
C19A—C17A—C20A113.1 (2)C19B—C17B—C18B109.6 (2)
C18A—C17A—C20A111.5 (2)C20B—C17B—C18B111.6 (2)
C17A—C18A—H18A109.5C17B—C18B—H18D109.5
C17A—C18A—H18B109.5C17B—C18B—H18E109.5
H18A—C18A—H18B109.5H18D—C18B—H18E109.5
C17A—C18A—H18C109.5C17B—C18B—H18F109.5
H18A—C18A—H18C109.5H18D—C18B—H18F109.5
H18B—C18A—H18C109.5H18E—C18B—H18F109.5
C17A—C19A—H19A109.5C17B—C19B—H19D109.5
C17A—C19A—H19B109.5C17B—C19B—H19E109.5
H19A—C19A—H19B109.5H19D—C19B—H19E109.5
C17A—C19A—H19C109.5C17B—C19B—H19F109.5
H19A—C19A—H19C109.5H19D—C19B—H19F109.5
H19B—C19A—H19C109.5H19E—C19B—H19F109.5
C17A—C20A—H20A109.5C17B—C20B—H20D109.5
C17A—C20A—H20B109.5C17B—C20B—H20E109.5
H20A—C20A—H20B109.5H20D—C20B—H20E109.5
C17A—C20A—H20C109.5C17B—C20B—H20F109.5
H20A—C20A—H20C109.5H20D—C20B—H20F109.5
H20B—C20A—H20C109.5H20E—C20B—H20F109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1A—H1OA···O3Ai0.96 (4)1.75 (4)2.689 (3)165 (3)
O1B—H1OB···O3Bii0.88 (3)1.84 (4)2.714 (3)179 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2980).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography