PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m754.
Published online 2009 June 10. doi:  10.1107/S160053680902145X
PMCID: PMC2969269

Chlorido(2-formyl-6-hydroxy­phenyl-κC 1)mercury(II)

Abstract

In the planar [r.m.s. deviation 0.0265 Å] title compound, [Hg(C7H5O2)Cl], the HgII atom shows a typical linear coordination by a C atom of a benzene ring and a Cl atom. The benzene C atom and the aldehyde O atom chelate the HgII atom by assuming the Hg(...)O separation of 2.817 (9) Å as a weak intra­molecular coordination bonding distance. The resulting five-membered metallacycle is nearly coplanar with the benzene ring dihedral angle 2.9 (1)°]. Inter­molecular O—H(...)O hydrogen bonds are present in the crystal structure, resulting in a one-dimensional supra­molecular architecture parallel to [201].

Related literature

For historical background and for properties of cyclo­metallated compounds, see: Dupont et al. (2005 [triangle]); Xu et al. (2009 [triangle]). For the properties of cyclo­mercurated compounds, see: Wu et al. (2001 [triangle]); Ryabov et al. (2003 [triangle]). For related structure, see: King et al. (2002 [triangle]); Zhou et al. (2005 [triangle]); Hao et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m754-scheme1.jpg

Experimental

Crystal data

  • [Hg(C7H5O2)Cl]
  • M r = 357.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m754-efi1.jpg
  • a = 4.7200 (19) Å
  • b = 17.702 (7) Å
  • c = 10.506 (4) Å
  • β = 98.839 (5)°
  • V = 867.4 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 18.00 mm−1
  • T = 296 K
  • 0.08 × 0.01 × 0.01 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.327, T max = 0.841
  • 5002 measured reflections
  • 1595 independent reflections
  • 1130 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.114
  • S = 1.01
  • 1595 reflections
  • 101 parameters
  • H-atom parameters constrained
  • Δρmax = 0.94 e Å−3
  • Δρmin = −2.32 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680902145X/si2180sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902145X/si2180Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Henan Education Department (No. 2009B150019).

supplementary crystallographic information

Comment

Cyclometallated compounds containing a metal-carbon bond stabilized by the intramolecular coordination of one or two neutral atoms have a very rich chemistry and are widely used in synthesis, catalysis and materials (Dupont et al., 2005; Xu et al., 2009). Among them, cyclomercurated compounds are easy to prepare through a C—H activation process and their ease in undergoing transmetallation for the synthesis of other organometallic compounds (Wu et al., 2001; Ryabov et al., 2003).

In the planar title compound (Fig. 1), the mercury(II) atom shows a typical linear coordination geometry with a carbon atom of the benzene ring and the chloride atom in trans position. O2—Hg1 distance (2.817 (9) Å) is shorter than the sum of van der Waals radii (3.29 Å)of Hg and O (King et al., 2002), indicating the presence of the weak intramolecular coordination, while it is longer than those of the related Hg(II) complex (Zhou et al., 2005). The C—Hg and Hg—Cl bond distances are within normal ranges. The C7—Hg1—Cl1 angle is 178.1 (3)°, slightly smaller than the ideal value of 180° in organic derivatives of mercury(Hao et al., 2007). Intermolecular O—H···O hydrogen bonds are present in the crystal structure (Table 1), resulting in a one-dimensional supramolecular architecture (Fig.2).

Experimental

The title compound was prepared from the m-hydroxybenzaldehyde with Hg(OAc)2 and subsequent treatment with LiCl and recrystallized from dichloromethane-petroleum ether solution at room temperature to give the desired product as colorless crystals suitable for single-crystal X-ray diffraction (yield 82%; m.p 442–444 K). IR data (v_max/ cm-1): 3408, 2926, 1651, 1567, 1445, 1291, 1199, 789. NMR δ(H) 7.18(1H,d), 7.45 (1H,t), 7.52(1H,d), 10.12(1H,s), 12.11(1H,m).

Refinement

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with C—H distances constrained to 0.93–0.96 Å, and with Uiso(H)=1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with displacement ellipsoids at the 30% probability level.
Fig. 2.
Partial view of the crystal packing showing the formation of the one-dimensional chain structure formed by the intermolecular O—H···O hydrogen bonds.

Crystal data

[Hg(C7H5O2)Cl]F(000) = 640
Mr = 357.15Dx = 2.735 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.7200 (19) ÅCell parameters from 1175 reflections
b = 17.702 (7) Åθ = 2.3–22.3°
c = 10.506 (4) ŵ = 18.00 mm1
β = 98.839 (5)°T = 296 K
V = 867.4 (6) Å3Block, colourless
Z = 40.08 × 0.01 × 0.01 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer1595 independent reflections
Radiation source: fine-focus sealed tube1130 reflections with I > 2σ(I)
graphiteRint = 0.050
[var phi] and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −5→5
Tmin = 0.327, Tmax = 0.841k = −21→21
5002 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0564P)2 + 3.2348P] where P = (Fo2 + 2Fc2)/3
1595 reflections(Δ/σ)max = 0.001
101 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = −2.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Hg10.26063 (12)0.66539 (3)0.30597 (6)0.0470 (2)
O1−0.160 (2)0.6917 (5)0.5036 (10)0.050 (2)
H1−0.29480.69600.54390.074*
O20.468 (2)0.7878 (5)0.1758 (9)0.052 (2)
Cl10.4684 (11)0.5580 (2)0.2416 (5)0.0833 (14)
C10.345 (3)0.8403 (7)0.2208 (14)0.043 (3)
H1A0.38020.88880.19280.052*
C20.151 (3)0.8330 (7)0.3132 (13)0.042 (3)
C30.039 (3)0.8998 (7)0.3574 (14)0.051 (4)
H30.08370.94600.32350.061*
C4−0.137 (3)0.8974 (7)0.4509 (13)0.048 (4)
H4−0.21230.94200.47880.058*
C5−0.204 (3)0.8276 (7)0.5043 (13)0.044 (3)
H5−0.31930.82570.56830.053*
C6−0.092 (3)0.7611 (7)0.4591 (12)0.042 (3)
C70.087 (2)0.7635 (7)0.3644 (11)0.032 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Hg10.0477 (4)0.0392 (3)0.0583 (4)0.0027 (3)0.0213 (3)−0.0048 (3)
O10.047 (6)0.048 (5)0.060 (6)−0.006 (4)0.027 (5)0.003 (5)
O20.047 (6)0.058 (6)0.056 (6)−0.003 (5)0.028 (5)−0.011 (5)
Cl10.098 (4)0.044 (2)0.117 (4)0.016 (2)0.045 (3)−0.010 (2)
C10.033 (7)0.043 (7)0.054 (8)−0.002 (6)0.007 (6)0.005 (7)
C20.029 (6)0.053 (8)0.043 (7)−0.008 (6)0.007 (6)0.000 (6)
C30.058 (9)0.034 (7)0.070 (10)0.012 (6)0.038 (8)0.012 (7)
C40.056 (9)0.035 (7)0.056 (9)0.006 (6)0.012 (7)−0.010 (6)
C50.040 (8)0.053 (8)0.044 (8)0.005 (7)0.020 (6)−0.007 (7)
C60.027 (7)0.054 (8)0.045 (8)−0.012 (6)0.007 (6)0.000 (6)
C70.023 (6)0.043 (7)0.026 (6)−0.004 (5)−0.008 (5)0.001 (5)

Geometric parameters (Å, °)

Hg1—C72.052 (12)C2—C31.403 (17)
Hg1—Cl12.288 (4)C3—C41.382 (17)
O1—C61.370 (14)C3—H30.9300
O1—H10.8200C4—C51.412 (18)
O2—C11.229 (14)C4—H40.9300
C1—C21.440 (18)C5—C61.402 (17)
C1—H1A0.9300C5—H50.9300
C2—C71.394 (16)C6—C71.403 (16)
C7—Hg1—Cl1178.1 (3)C3—C4—H4119.9
C6—O1—H1109.5C5—C4—H4119.9
O2—C1—C2125.4 (12)C6—C5—C4118.9 (11)
O2—C1—H1A117.3C6—C5—H5120.6
C2—C1—H1A117.3C4—C5—H5120.6
C7—C2—C1122.4 (12)O1—C6—C7117.8 (11)
C7—C2—C3120.1 (12)O1—C6—C5121.2 (11)
C1—C2—C3117.3 (11)C7—C6—C5121.0 (12)
C4—C3—C2120.6 (12)C2—C7—C6119.2 (11)
C4—C3—H3119.7C2—C7—Hg1120.8 (9)
C2—C3—H3119.7C6—C7—Hg1119.9 (9)
C3—C4—C5120.2 (11)
O2—C1—C2—C72(2)C3—C2—C7—C60.8 (19)
O2—C1—C2—C3177.6 (14)C1—C2—C7—Hg1−1.9 (18)
C7—C2—C3—C4−1(2)C3—C2—C7—Hg1−177.8 (10)
C1—C2—C3—C4−176.7 (14)O1—C6—C7—C2177.3 (12)
C2—C3—C4—C51(2)C5—C6—C7—C2−1.1 (19)
C3—C4—C5—C6−1(2)O1—C6—C7—Hg1−4.2 (16)
C4—C5—C6—O1−177.0 (12)C5—C6—C7—Hg1177.4 (10)
C4—C5—C6—C71(2)Cl1—Hg1—C7—C246 (10)
C1—C2—C7—C6176.6 (12)Cl1—Hg1—C7—C6−132 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.932.730 (12)165

Symmetry codes: (i) x−1, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2180).

References

  • Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dupont, J., Consorti, C. S. & Spencer, J. (2005). Chem. Rev.105, 2527–2571. [PubMed]
  • Hao, X. Q., Gong, J. F., Song, W. T., Wu, Y. J. & Song, M. P. (2007). Inorg. Chem. Commun.10, 371–375.
  • King, J. B., Haneline, M. R., Tsunoda, M. & Gabbai, F. P. (2002). J. Am. Chem. Soc.124, 9350–9351. [PubMed]
  • Ryabov, A. D., Soukharev, V. S., Alexandrova, L., Lagadec, R. L. & Pfeffer, M. (2003). Inorg. Chem.42, 6598–6600. [PubMed]
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, Y. J., Huo, S. Q., Gong, J. F., Cui, X. L., Ding, K. L., Du, C. X., Liu, Y. H. & Song, M. P. (2001). J. Organomet. Chem.637–639, 27–46.
  • Xu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. & Ji, B. M. (2009). Organometallics, 28, 1909–1916.
  • Zhou, W. Q., Yang, W., Qiu, L. H., Yong, Y. & Yu, Z. F. (2005). J. Mol. Struct.749, 89–95.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography