PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1453.
Published online 2009 June 6. doi:  10.1107/S1600536809020054
PMCID: PMC2969263

1-(4-Cyano­benz­yl)-4-methyl­pyridinium bromide

Abstract

In the title compound, C14H13N2 +·Br, the 1-(4-cyano­benz­yl)-4-methyl­pyridinium cation has a Λ-shaped conformation, and the dihedral angle between the benzene and pyridinium rings is 75.8 (2)°. In the crystal, two cations form a dimer through π–π inter­actions between pyridine rings [the centroid–centroid distance is 3.685 (1) Å].

Related literature

For cations with similar geometry, see: Liu et al. (2007 [triangle], 2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1453-scheme1.jpg

Experimental

Crystal data

  • C14H13N2 +·Br
  • M r = 289.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1453-efi1.jpg
  • a = 12.967 (5) Å
  • b = 8.217 (4) Å
  • c = 12.260 (5) Å
  • β = 96.900 (5)°
  • V = 1296.8 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.15 mm−1
  • T = 296 K
  • 0.24 × 0.20 × 0.16 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.493, T max = 0.601
  • 6270 measured reflections
  • 2298 independent reflections
  • 1945 reflections with I > 2σ(I)
  • R int = 0.106

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.204
  • S = 1.04
  • 2298 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.84 e Å−3
  • Δρmin = −0.82 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809020054/bq2140sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020054/bq2140Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20731004), the Natural Science Foundation for Outstanding Scholars of Anhui Province, China (grant No. 044-J-04011) and the Natural Science Foundation of the Education Commission of Anhui Province, China (No. KJ2008B004).

supplementary crystallographic information

Comment

The asymmetric unit of (I) contains one cation and one Br anion (Fig. 1). The cation has a Λ-shaped conformation, and the dihedral angles formed by the C5/C8/N2 plane with the benzene and pyridinium rings are 61.19 (2)° and 72.88 (2)°, respectively (75.8 (2)° between the benzene and pyridinium rings). The geometry of the cation is similar to the one observed in Liu et al. (2008) and Liu et al. (2007). Two cations form a dimer through π–π interaction between pyridine rings, the distance of centroid-to-centroid is 3.685Å, which further are linked into one dimensional chain by the π–π interaction between benzene ring, the distance of centroid-to-centroid is 4.242Å. A three-dimensional supramolecular structure was packed via Van der Waals forces (Fig. 2).

Experimental

4-cyanobenzyl bromide (10 mmol, 1.96 g) and 4-methylpyridine (20 mmol, 1.88 g) were added to 40 ml of acetone. After stirring and refluxing for 12 h, the mixture was filtered, and the clear solution was allowed to evaporate slowly under inert atmosphere. Block crystals of the title compound were obtained after 3 days. The crystals were filtered, washed by acetone and dried in air.

Refinement

H atoms were positioned geometrically, with C—H = 0.93Å, 0.96Å and 0.97Å for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for other H atoms. The deepest hole is located 1.12Å from atom C16.

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
One dimensional chain is formed π–π interaction along the a-axis.

Crystal data

C14H13N2+·BrF(000) = 584
Mr = 289.17Dx = 1.481 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3626 reflections
a = 12.967 (5) Åθ = 2.9–27.7°
b = 8.217 (4) ŵ = 3.15 mm1
c = 12.260 (5) ÅT = 296 K
β = 96.900 (5)°Block, colorless
V = 1296.8 (10) Å30.24 × 0.20 × 0.16 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer2298 independent reflections
Radiation source: sealed tube1945 reflections with I > 2σ(I)
graphiteRint = 0.106
[var phi] and ω scansθmax = 25.1°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −15→15
Tmin = 0.493, Tmax = 0.601k = −9→8
6270 measured reflectionsl = −13→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.1306P)2 + 1.6412P] where P = (Fo2 + 2Fc2)/3
2298 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = −0.82 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.77449 (4)0.08544 (6)0.80230 (4)0.0499 (3)
C10.3632 (6)0.5777 (8)0.3983 (7)0.0690 (18)
C20.4519 (5)0.6742 (8)0.4207 (5)0.0618 (15)
C30.5131 (6)0.7037 (11)0.3372 (6)0.084 (2)
H30.49490.65790.26820.101*
C40.6000 (5)0.7993 (10)0.3554 (6)0.0783 (19)
H40.64010.81730.29860.094*
C50.6291 (5)0.8699 (8)0.4575 (6)0.0639 (15)
C60.5696 (5)0.8356 (9)0.5418 (5)0.0664 (16)
H60.58890.87840.61150.080*
C70.4814 (5)0.7378 (8)0.5231 (6)0.0672 (16)
H70.44250.71560.58030.081*
C80.7202 (5)0.9829 (9)0.4770 (6)0.0728 (17)
H8A0.70831.07550.42820.087*
H8B0.72511.02310.55180.087*
C90.8667 (5)0.9449 (9)0.3689 (7)0.0723 (18)
H90.83551.01950.31820.087*
C100.9583 (6)0.8757 (9)0.3518 (6)0.0716 (17)
H100.98820.90060.28860.086*
C111.0081 (5)0.7671 (7)0.4288 (6)0.0644 (16)
C120.9567 (5)0.7273 (8)0.5214 (7)0.0741 (19)
H120.98710.65480.57400.089*
C130.8650 (5)0.7938 (9)0.5326 (6)0.0719 (17)
H130.83080.76290.59180.086*
N10.2896 (5)0.4920 (10)0.3754 (6)0.0880 (18)
N20.8195 (5)0.9065 (5)0.4596 (5)0.0624 (14)
C141.0990 (5)0.6989 (8)0.4164 (6)0.0692 (17)
H14A1.10670.59980.45810.104*
H14B1.15420.77240.44220.104*
H14C1.10180.67530.34020.104*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0502 (4)0.0532 (4)0.0468 (4)−0.00751 (19)0.0074 (3)−0.00020 (19)
C10.056 (4)0.074 (4)0.078 (5)0.005 (3)0.014 (3)0.005 (3)
C20.057 (3)0.063 (4)0.065 (4)0.009 (3)0.006 (3)0.007 (3)
C30.083 (5)0.107 (6)0.065 (4)−0.016 (4)0.019 (4)−0.004 (4)
C40.070 (4)0.105 (5)0.064 (4)−0.013 (4)0.022 (3)−0.003 (4)
C50.058 (3)0.060 (3)0.075 (4)0.007 (3)0.012 (3)0.003 (3)
C60.066 (4)0.075 (4)0.060 (4)−0.003 (3)0.016 (3)−0.006 (3)
C70.067 (4)0.074 (4)0.064 (4)0.003 (3)0.025 (3)0.006 (3)
C80.062 (4)0.069 (4)0.088 (5)0.005 (3)0.016 (3)−0.002 (4)
C90.061 (4)0.078 (4)0.078 (5)−0.002 (3)0.008 (3)0.012 (3)
C100.066 (4)0.079 (4)0.073 (4)0.003 (3)0.020 (3)0.003 (4)
C110.051 (3)0.062 (4)0.081 (4)−0.006 (3)0.010 (3)−0.002 (3)
C120.061 (4)0.073 (4)0.088 (5)0.001 (3)0.003 (3)0.010 (4)
C130.066 (4)0.082 (4)0.071 (4)−0.002 (3)0.020 (3)0.008 (3)
N10.062 (3)0.095 (5)0.106 (5)−0.002 (4)0.011 (3)−0.002 (4)
N20.059 (3)0.063 (3)0.066 (4)0.002 (2)0.012 (3)0.006 (2)
C140.055 (3)0.068 (4)0.086 (5)0.002 (3)0.014 (3)−0.005 (3)

Geometric parameters (Å, °)

C1—N11.192 (9)C8—H8B0.9700
C1—C21.397 (10)C9—C101.355 (10)
C2—C71.371 (9)C9—N21.370 (10)
C2—C31.390 (10)C9—H90.9300
C3—C41.370 (11)C10—C111.399 (10)
C3—H30.9300C10—H100.9300
C4—C51.389 (10)C11—C141.330 (9)
C4—H40.9300C11—C121.423 (10)
C5—C61.392 (9)C12—C131.330 (10)
C5—C81.499 (9)C12—H120.9300
C6—C71.394 (9)C13—N21.371 (9)
C6—H60.9300C13—H130.9300
C7—H70.9300C14—H14A0.9600
C8—N21.471 (8)C14—H14B0.9600
C8—H8A0.9700C14—H14C0.9600
N1—C1—C2177.0 (8)C10—C9—N2121.0 (7)
C7—C2—C3119.1 (6)C10—C9—H9119.5
C7—C2—C1122.0 (6)N2—C9—H9119.5
C3—C2—C1118.9 (7)C9—C10—C11120.4 (7)
C4—C3—C2120.7 (7)C9—C10—H10119.8
C4—C3—H3119.6C11—C10—H10119.8
C2—C3—H3119.6C14—C11—C10122.4 (7)
C3—C4—C5121.0 (6)C14—C11—C12120.1 (7)
C3—C4—H4119.5C10—C11—C12117.5 (6)
C5—C4—H4119.5C13—C12—C11119.9 (7)
C4—C5—C6118.0 (6)C13—C12—H12120.0
C4—C5—C8121.8 (6)C11—C12—H12120.0
C6—C5—C8120.2 (6)C12—C13—N2122.0 (7)
C5—C6—C7120.8 (6)C12—C13—H13119.0
C5—C6—H6119.6N2—C13—H13119.0
C7—C6—H6119.6C9—N2—C13119.1 (6)
C2—C7—C6120.3 (6)C9—N2—C8120.3 (6)
C2—C7—H7119.9C13—N2—C8120.6 (6)
C6—C7—H7119.9C11—C14—H14A109.5
N2—C8—C5113.5 (6)C11—C14—H14B109.5
N2—C8—H8A108.9H14A—C14—H14B109.5
C5—C8—H8A108.9C11—C14—H14C109.5
N2—C8—H8B108.9H14A—C14—H14C109.5
C5—C8—H8B108.9H14B—C14—H14C109.5
H8A—C8—H8B107.7
C7—C2—C3—C4−2.2 (12)N2—C9—C10—C11−2.0 (11)
C1—C2—C3—C4179.2 (7)C9—C10—C11—C14−178.6 (7)
C2—C3—C4—C5−0.2 (13)C9—C10—C11—C122.9 (11)
C3—C4—C5—C62.4 (11)C14—C11—C12—C13−179.0 (7)
C3—C4—C5—C8−176.3 (7)C10—C11—C12—C13−0.5 (11)
C4—C5—C6—C7−2.1 (10)C11—C12—C13—N2−2.9 (11)
C8—C5—C6—C7176.5 (6)C10—C9—N2—C13−1.4 (10)
C3—C2—C7—C62.4 (10)C10—C9—N2—C8179.9 (7)
C1—C2—C7—C6−179.0 (6)C12—C13—N2—C93.9 (11)
C5—C6—C7—C2−0.2 (10)C12—C13—N2—C8−177.4 (7)
C4—C5—C8—N2−61.6 (9)C5—C8—N2—C9107.0 (7)
C6—C5—C8—N2119.8 (7)C5—C8—N2—C13−71.7 (8)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2140).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, G.-X. (2007). Acta Cryst. E63, o704–o706.
  • Liu, G.-X., Xu, H., Ren, X.-M. & Sun, W.-Y. (2008). CrystEngComm, 10, 1574–1582.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography