PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1674.
Published online 2009 June 24. doi:  10.1107/S1600536809023435
PMCID: PMC2969256

Bis(benzothia­zol-2-ylmeth­yl)amine

Abstract

In the title compound, C16H13N3S2, the dihedral angle between the two benzothia­zole ring systems is 20.41 (2)°. In the crystal structure, inter­molecular N—H(...)N hydrogen bonds link mol­ecules into a chain along the b axis. The packing is further stabilized by C—H(...)π stacking inter­actions involving the two benzothia­zole ring systems.

Related literature

For applications of benzothiazole devivatives, see: Pinheiro et al. (1990 [triangle]); Emad et al. (2009 [triangle]). For their use as ligands, see: Oughtred et al. (1982 [triangle]); Akther et al. (2008 [triangle]). For related structures, see: Laurence et al. (1980 [triangle].

An external file that holds a picture, illustration, etc.
Object name is e-65-o1674-scheme1.jpg

Experimental

Crystal data

  • C16H13N3S2
  • M r = 311.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1674-efi1.jpg
  • a = 7.8478 (5) Å
  • b = 5.8042 (3) Å
  • c = 16.1548 (9) Å
  • β = 97.910 (1)°
  • V = 728.85 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 298 K
  • 0.23 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.889, T max = 0.965
  • 9009 measured reflections
  • 3603 independent reflections
  • 3473 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.079
  • S = 1.07
  • 3603 reflections
  • 193 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.22 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1623 Friedel pairs
  • Flack parameter: −0.07 (4)

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]; data reduction: SAINT-Plus program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809023435/pk2169sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023435/pk2169Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Benzothiazole devivatives have been used as photostablizers and metal chelating agents (Pinheiro et al., 1990; Emad et al., 2009). Many chelating heterocyclic ligands bearing benzothiazole group have been reported in recent years (Oughtred et al., 1982; Akther et al., 2008). The wide range of application of the benzothiazole chelators and their metal complexes aroused our interest to prepare a new series of metal complexes. With this mind, the title compound was prepared and we report the crystal stucture herein.

In the molecular structure (Fig. 1), the dihedral angle between the two benzothiazole ring systems is 20.41 (2)°. The C—N bond distances range from 1.2906 (18) to 1.4567 (18) Å, and the CN(amino) bonds are longer than the C—N (benzothiazolyl) bonds. In the crystal structure (Fig. 2), intermolecular N—H···N hydrogen bond links molecules into a chain along the b axis. The packing is further stabilized by C—H···π stacking interactions involving two benzothiazole ring systems.

Experimental

The title compound was synthesized according to a literature procedure (Laurence et al., 1980). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a dichloromethane solution at room temperature.

Refinement

H atoms bonded to carbon atoms were placed in idealized positions [CH(methylene)=0.97 Å and C—H(aromatic) =0.93 Å] and included in therefinement in the riding-model approximation, with Uiso(methyl and aromatic H) = 1.2Ueq(C). H atoms bonded to N atom was found from the difference map and refined with the restraint of N—H=0.86 (1)Å and Uiso(H)=1.2Ueq(N).

Figures

Fig. 1.
The molecular structure with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Part of the crystal structure showing hydrogen bonds as dashed lines.

Crystal data

C16H13N3S2F(000) = 324
Mr = 311.41Dx = 1.419 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6428 reflections
a = 7.8478 (5) Åθ = 2.6–28.2°
b = 5.8042 (3) ŵ = 0.36 mm1
c = 16.1548 (9) ÅT = 298 K
β = 97.910 (1)°Block, colourless
V = 728.85 (7) Å30.23 × 0.12 × 0.10 mm
Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer3603 independent reflections
Radiation source: fine focus sealed Siemens Mo tube3473 reflections with I > 2σ(I)
graphiteRint = 0.032
0.3° wide ω exposures scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −10→10
Tmin = 0.889, Tmax = 0.965k = −7→7
9009 measured reflectionsl = −21→21

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079w = 1/[σ2(Fo2) + (0.0549P)2 + 0.0014P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
3603 reflectionsΔρmax = 0.19 e Å3
193 parametersΔρmin = −0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 1621 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.07 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.32522 (18)−0.2480 (3)0.92805 (8)0.0469 (3)
H1A0.4335−0.33060.93800.056*
H1B0.2355−0.35730.90780.056*
C20.28685 (17)−0.1421 (3)1.00759 (9)0.0421 (3)
C30.27501 (17)−0.0905 (3)1.14199 (9)0.0419 (3)
C40.30208 (19)−0.1344 (3)1.22742 (9)0.0508 (3)
H40.3569−0.26851.24830.061*
C50.2453 (2)0.0270 (3)1.28049 (10)0.0563 (4)
H50.26260.00011.33780.068*
C60.1634 (2)0.2274 (4)1.25053 (10)0.0552 (4)
H60.12790.33281.28800.066*
C70.13337 (18)0.2734 (3)1.16584 (9)0.0512 (3)
H70.07750.40741.14560.061*
C80.18981 (17)0.1116 (3)1.11172 (8)0.0430 (3)
C90.3518 (2)−0.1629 (3)0.78314 (9)0.0520 (4)
H9A0.2734−0.29160.77120.062*
H9B0.4680−0.21940.78270.062*
C100.31251 (18)0.0167 (3)0.71708 (9)0.0440 (3)
C110.30569 (18)0.1982 (3)0.59715 (9)0.0463 (3)
C120.3417 (2)0.2449 (4)0.51678 (10)0.0589 (4)
H120.41350.14860.49120.071*
C130.2688 (2)0.4370 (4)0.47583 (10)0.0628 (5)
H130.29300.47050.42240.075*
C140.1602 (2)0.5812 (4)0.51276 (11)0.0617 (4)
H140.11310.71000.48400.074*
C150.1213 (2)0.5352 (3)0.59197 (11)0.0571 (4)
H150.04820.63130.61680.069*
C160.19401 (18)0.3417 (3)0.63367 (9)0.0449 (3)
N10.33530 (16)−0.0701 (2)0.86544 (8)0.0462 (3)
H10.413 (2)0.023 (3)0.8796 (11)0.055*
N20.32946 (14)−0.2309 (2)1.08061 (7)0.0448 (3)
N30.37321 (16)0.0144 (3)0.64678 (8)0.0499 (3)
S10.17864 (5)0.12218 (6)1.00381 (2)0.04752 (10)
S20.17133 (5)0.23922 (7)0.73265 (2)0.05010 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0526 (7)0.0424 (7)0.0455 (7)0.0054 (7)0.0062 (6)0.0017 (6)
C20.0395 (6)0.0388 (7)0.0475 (7)0.0010 (5)0.0043 (5)0.0032 (6)
C30.0399 (6)0.0417 (7)0.0443 (7)−0.0007 (5)0.0062 (5)0.0049 (5)
C40.0519 (8)0.0532 (8)0.0471 (8)0.0010 (7)0.0059 (6)0.0091 (7)
C50.0587 (9)0.0677 (10)0.0437 (8)−0.0003 (8)0.0109 (7)0.0042 (7)
C60.0572 (8)0.0576 (9)0.0528 (8)0.0004 (8)0.0145 (6)−0.0076 (8)
C70.0522 (8)0.0476 (8)0.0536 (8)0.0050 (7)0.0065 (6)0.0001 (7)
C80.0416 (6)0.0446 (7)0.0425 (6)−0.0012 (6)0.0044 (5)0.0024 (6)
C90.0669 (9)0.0443 (8)0.0453 (8)0.0058 (7)0.0093 (7)−0.0039 (6)
C100.0469 (6)0.0413 (7)0.0435 (7)0.0005 (6)0.0046 (5)−0.0077 (6)
C110.0440 (7)0.0546 (9)0.0392 (6)−0.0016 (6)0.0022 (5)−0.0045 (6)
C120.0568 (8)0.0778 (12)0.0426 (7)0.0046 (9)0.0082 (6)−0.0028 (9)
C130.0641 (9)0.0788 (13)0.0439 (8)−0.0109 (9)0.0011 (7)0.0083 (8)
C140.0631 (9)0.0596 (11)0.0592 (9)−0.0012 (8)−0.0036 (7)0.0124 (8)
C150.0592 (8)0.0528 (9)0.0589 (9)0.0037 (8)0.0059 (7)0.0034 (8)
C160.0432 (7)0.0445 (7)0.0469 (7)−0.0045 (6)0.0055 (5)−0.0024 (6)
N10.0540 (7)0.0441 (7)0.0405 (6)−0.0066 (6)0.0063 (5)−0.0029 (5)
N20.0470 (6)0.0423 (6)0.0454 (6)0.0026 (5)0.0079 (5)0.0056 (5)
N30.0542 (6)0.0545 (7)0.0411 (6)0.0064 (6)0.0066 (5)−0.0048 (6)
S10.0553 (2)0.04359 (19)0.04214 (17)0.00959 (16)0.00134 (13)0.00366 (15)
S20.0592 (2)0.04371 (19)0.05053 (19)0.00410 (16)0.01872 (15)−0.00142 (15)

Geometric parameters (Å, °)

C1—N11.4554 (19)C9—C101.493 (2)
C1—C21.4922 (19)C9—H9A0.9700
C1—H1A0.9700C9—H9B0.9700
C1—H1B0.9700C10—N31.2906 (18)
C2—N21.2884 (18)C10—S21.7424 (15)
C2—S11.7503 (15)C11—C121.393 (2)
C3—C41.391 (2)C11—N31.394 (2)
C3—N21.3951 (18)C11—C161.397 (2)
C3—C81.404 (2)C12—C131.380 (3)
C4—C51.384 (2)C12—H120.9300
C4—H40.9300C13—C141.387 (3)
C5—C61.383 (3)C13—H130.9300
C5—H50.9300C14—C151.382 (2)
C6—C71.382 (2)C14—H140.9300
C6—H60.9300C15—C161.391 (2)
C7—C81.396 (2)C15—H150.9300
C7—H70.9300C16—S21.7382 (15)
C8—S11.7344 (13)N1—H10.821 (19)
C9—N11.4567 (18)
N1—C1—C2110.05 (13)C10—C9—H9B109.4
N1—C1—H1A109.7H9A—C9—H9B108.0
C2—C1—H1A109.7N3—C10—C9123.85 (14)
N1—C1—H1B109.7N3—C10—S2116.97 (13)
C2—C1—H1B109.7C9—C10—S2119.14 (11)
H1A—C1—H1B108.2C12—C11—N3125.12 (15)
N2—C2—C1124.47 (14)C12—C11—C16119.78 (16)
N2—C2—S1116.49 (12)N3—C11—C16115.10 (12)
C1—C2—S1119.04 (11)C13—C12—C11118.72 (17)
C4—C3—N2125.36 (14)C13—C12—H12120.6
C4—C3—C8119.93 (14)C11—C12—H12120.6
N2—C3—C8114.70 (12)C12—C13—C14121.34 (16)
C5—C4—C3118.20 (15)C12—C13—H13119.3
C5—C4—H4120.9C14—C13—H13119.3
C3—C4—H4120.9C15—C14—C13120.60 (17)
C6—C5—C4121.73 (15)C15—C14—H14119.7
C6—C5—H5119.1C13—C14—H14119.7
C4—C5—H5119.1C14—C15—C16118.44 (16)
C7—C6—C5121.09 (17)C14—C15—H15120.8
C7—C6—H6119.5C16—C15—H15120.8
C5—C6—H6119.5C15—C16—C11121.09 (14)
C6—C7—C8117.68 (16)C15—C16—S2129.40 (13)
C6—C7—H7121.2C11—C16—S2109.50 (11)
C8—C7—H7121.2C1—N1—C9113.07 (13)
C7—C8—C3121.37 (13)C1—N1—H1112.4 (13)
C7—C8—S1128.98 (12)C9—N1—H1110.0 (12)
C3—C8—S1109.60 (11)C2—N2—C3110.55 (13)
N1—C9—C10111.02 (13)C10—N3—C11109.95 (13)
N1—C9—H9A109.4C8—S1—C288.66 (7)
C10—C9—H9A109.4C16—S2—C1088.47 (7)
N1—C9—H9B109.4
N1—C1—C2—N2−153.63 (14)C12—C11—C16—C15−1.8 (2)
N1—C1—C2—S125.69 (16)N3—C11—C16—C15178.18 (14)
N2—C3—C4—C5177.62 (14)C12—C11—C16—S2179.13 (13)
C8—C3—C4—C5−0.9 (2)N3—C11—C16—S2−0.91 (16)
C3—C4—C5—C60.1 (2)C2—C1—N1—C9−173.01 (13)
C4—C5—C6—C70.6 (3)C10—C9—N1—C1164.09 (13)
C5—C6—C7—C8−0.5 (2)C1—C2—N2—C3−179.90 (13)
C6—C7—C8—C3−0.4 (2)S1—C2—N2—C30.76 (16)
C6—C7—C8—S1−177.64 (12)C4—C3—N2—C2−179.17 (14)
C4—C3—C8—C71.1 (2)C8—C3—N2—C2−0.58 (18)
N2—C3—C8—C7−177.61 (13)C9—C10—N3—C11176.92 (14)
C4—C3—C8—S1178.83 (11)S2—C10—N3—C11−0.93 (17)
N2—C3—C8—S10.15 (15)C12—C11—N3—C10−178.86 (15)
N1—C9—C10—N3154.02 (15)C16—C11—N3—C101.18 (18)
N1—C9—C10—S2−28.18 (18)C7—C8—S1—C2177.75 (14)
N3—C11—C12—C13−178.31 (16)C3—C8—S1—C20.21 (10)
C16—C11—C12—C131.7 (2)N2—C2—S1—C8−0.59 (11)
C11—C12—C13—C14−0.6 (3)C1—C2—S1—C8−179.96 (12)
C12—C13—C14—C15−0.3 (3)C15—C16—S2—C10−178.68 (16)
C13—C14—C15—C160.2 (3)C11—C16—S2—C100.31 (11)
C14—C15—C16—C110.8 (2)N3—C10—S2—C160.37 (13)
C14—C15—C16—S2179.72 (13)C9—C10—S2—C16−177.58 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.821 (19)2.489 (19)3.3054 (18)173.5 (17)
C1—H1···Cg1ii0.972.783.737 (16)168
C9—H9···Cg2ii0.972.733.689 (17)170
C14—H14···Cg3iii0.932.893.598 (2)134

Symmetry codes: (i) −x+1, y+1/2, −z+2; (ii) −x+1, y−1/2, −z+2; (iii) −x, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2169).

References

  • Akther, J., Lindeman, S. & Karim, M. R. (2008). Acta Cryst. E64, o1836. [PMC free article] [PubMed]
  • Bruker (2001). SAINT-Plus, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Emad, Y., Yang, F., Khawla, K., Abdualbasit, G. & Kumail, A. (2009). Am. J. Appl. Sci.6, 582–585.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Laurence, K. T., Richard, G. B. & James, T. (1980). Can. J. Chem.58, 1566-1576.
  • Oughtred, R. E., Raper, E. S., Nowell, I. W. & March, L. A. (1982). Acta Cryst. B38, 2044–2046.
  • Pinheiro, S., Sousa, J. d., Santiago, M., Carvalho, I. A., Silva, A., Batista, E., Castellano, V. R., Singhab, U. & Gurub, P. (1990). Eur. J. Med. Chem.25, 533–538.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography