PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1662–o1663.
Published online 2009 June 20. doi:  10.1107/S1600536809022855
PMCID: PMC2969254

2,2′-[(E,E)-1,1′-(2,2-Dimethyl­propane-1,3-diyldinitrilo)diethyl­idyne]diphenol

Abstract

The title Schiff base, C21H26N2O2, contains two intra­molecular O—H(...)N hydrogen bonds between the hydroxyl groups and the nearest imine N atoms, each leading to a six-membered ring. Weak C—H(...)O hydrogen bonds result in a ladder network running along the a axis. In addition, inter­molecular C—H(...)π inter­actions serve to stabilize the extended structure.

Related literature

For the biological activity of Schiff bases, see: Singh & Dash (1988 [triangle]); More et al. (2001 [triangle]); Baseer et al. (2000 [triangle]); El-Masry et al. (2000 [triangle]); Kabeer et al. (2001 [triangle]); Kuzmin et al. (2000 [triangle]); Desai et al. (2001 [triangle]). For metal complexes of Schiff bases, see: Habibi et al. (2007a [triangle]). For related structures, see: Barati et al. (2009 [triangle]); Habibi et al. (2007b [triangle],c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1662-scheme1.jpg

Experimental

Crystal data

  • C21H26N2O2
  • M r = 338.44
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1662-efi1.jpg
  • a = 7.7847 (9) Å
  • b = 9.1857 (12) Å
  • c = 13.3801 (14) Å
  • α = 79.547 (4)°
  • β = 77.508 (3)°
  • γ = 85.537 (4)°
  • V = 917.89 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 193 K
  • 0.40 × 0.30 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.969, T max = 0.992
  • 9076 measured reflections
  • 4143 independent reflections
  • 3022 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.135
  • S = 1.05
  • 4143 reflections
  • 331 parameters
  • All H-atom parameters refined
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022855/fj2213sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022855/fj2213Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Partial support of this work by Yasouj University and the University of Isfahan is acknowledged.

supplementary crystallographic information

Comment

Schiff bases rank among the most versatile synthetic organic intermediates. They are reported to show avariety of biological activities including antifungal (Singh & Dash, 1988; More et al., 2001), antibacterial (Baseer et al., 2000; El-Masry et al., 2000; Kabeer et al., 2001) and anticancer (Kuzmin et al., 2000; Desai et al., 2001) among others.

Schiff bases and their metal complexes play a key role in understanding the coordination chemistry of transition-metal ions (Habibi et al., 2007a).

Relatively few crystal structures have been reported for tetradentate Schiff base ligands and complexes (Habibi et al., 2007b,c; Barati et al., 2009).

salen type Schiff bases have enol–keto tautomerism. Depending on the type of tautomer, two types of intramolecular hydrogen bond involving a photochemically or thermochemically induced proton transfer are possible, namely O···H–N in keto (NH) and O–H···N in enol (OH) tautomers. Although the proton transfer reaction is seemingly straight forward, it causes a change in the π electronic system and induces large-scale in-plane and out-of-plane skeletal deformations.

The molecular structure of the ligand is represented in figure 1. The bond lengths and angles are in eligible range. Furthermore, the shortest N–O distances [average 2.521 (3) Å] are indicative of intramolecular hydrogen bonding, as indicated by the dotted lines in the figure 1. The N1–C9 [1.4622 (15) Å] and N1–C7 [1.2833 (15) Å] bonds show typical values of C–N and C=N bonds, respectively.

The C1–C6 benzene ring is nearly perpendicular to C16–C21 benzene ring and makes the dihedral angle of 86.53 (5)°. The C7–N1–C9–C10 and C14–N2–C13–C10 torsion angles are -158.41 (11) and 178.35 (10)°, respectively, and the C6–C7–N1–C9 and C16–C14–N2–C13 torsion angles are177.71 (10) and -179.70 (10)°, respectively.

There are two strong intramolecular hydrogen bonds [O1–H1···N1 and O2–H2···N2], (Table1 and Fig. 1), and each of them serves to stabilize the geometry of the molecule.

The molecules of (I) are packed into one-dimensional polymeric ladder like arrangements generated by translation along a axis of the unit cell with the aid of weak C3–H3···O2i and C19–H19···O1ii hydrogen bonds [symmetry code: (i) 1 - x, 1 - y, 1 - z, symmetry code: (ii) 1 - x, 1 + y, 1 - z] (Fig. 2). A noteworthy intermolecular C–H···π interaction (Fig. 3) involving the ring through atoms C1—C6 (centroid Cg1), Cg1···Cg1[symmetry code: -x, 1 + y, 1 - z], supplies a principal contribution to the molecular packing.

Experimental

To 1 mmol of 2,2-dimethyl-1,3-propanediamine in 15 ml e thanol, 2 mmol of 2-hydroxyacetophenone in 15 ml e thanol was added. The reaction mixture was refluxed for 4 h. Then the mixture was kept in refrigerator overnight and then filtered to give the product as yellow crystals suitable for X-ray single-crystal in 92% yields. The product was characterized by physical and spectral data. Elemental analysis, %C21H26N2O2: calculated: C, 74.52; H, 7.74; N, 8.28; O, 9.45; found: C, 74.55; H, 7.68; N, 8.27. IR (KBr, cm-1): 3442 (m, –OH), 3042 (m,CH-aromatic), 2982 (m, CH-aliphatic), 2962 (m, CH-aliphatic), 2903 (m,CH-aliphatic), 2833 (m, CH-iminic), 1614(versus, –C=N(asym)), 1579 (s, –C=N(sym)),1509 (s), 1449 (s), 1304(s), 1259 (m), 1238 (m), 1155 (s), 1061 (s, C—O), 936 (m),839 (s), 759 (versus), 634 (m), 581(m), 523 (m), 503 (m), 411(w). UV [EtOH, λnm(ε)]: 390 (0.70× 106), 321 (0.64× 106), 276 (shoulder, 1.37× 106), 254 (1.94× 106).

Refinement

All H atoms were located in the subsequent difference Fourier maps and they were refined with isotopic thermal parameters.

Figures

Fig. 1.
A view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The intramolecular hydrogen bond is depicted by a dashed line.
Fig. 2.
The C–H···O weak intermolecular hydrogen bond polymeric ladder like chains of (I). [symmetry code: (i) 1 - x, 1 - y, 1 - z, symmetry code: (ii) 1 - x, 1 + y, 1 - z.]
Fig. 3.
The C–H···π interactions in the crystal structure of (I) involving the ring through atoms C1—C6 (centroid Cg1). (Symmetry code for the interaction: -x, 1 + y, 1 - z)

Crystal data

C21H26N2O2Z = 2
Mr = 338.44F(000) = 364
Triclinic, P1Dx = 1.225 Mg m3
a = 7.7847 (9) ÅMo Kα radiation, λ = 0.71075 Å
b = 9.1857 (12) ÅCell parameters from 6952 reflections
c = 13.3801 (14) Åθ = 3.2–27.5°
α = 79.547 (4)°µ = 0.08 mm1
β = 77.508 (3)°T = 193 K
γ = 85.537 (4)°Block, yellow
V = 917.89 (18) Å30.40 × 0.30 × 0.10 mm

Data collection

Rigaku R-AXIS RAPID diffractometer4143 independent reflections
Radiation source: fine-focus sealed tube3022 reflections with I > 2σ(I)
graphiteRint = 0.023
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = −9→10
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −11→11
Tmin = 0.969, Tmax = 0.992l = −17→17
9076 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.135All H-atom parameters refined
S = 1.05w = 1/[σ2(Fo2) + (0.0886P)2] where P = (Fo2 + 2Fc2)/3
4143 reflections(Δ/σ)max < 0.001
331 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.15478 (13)0.65393 (11)0.31309 (7)0.0451 (2)
O2−0.20734 (13)0.07117 (12)0.24962 (8)0.0540 (3)
N10.21630 (13)0.37811 (11)0.34121 (8)0.0364 (2)
N20.11114 (13)0.06677 (11)0.15578 (8)0.0362 (2)
C10.19076 (15)0.65208 (14)0.40716 (9)0.0359 (3)
C20.18871 (17)0.78713 (16)0.44180 (11)0.0432 (3)
C30.22510 (18)0.79071 (17)0.53777 (11)0.0478 (4)
C40.26271 (18)0.66134 (18)0.60108 (11)0.0485 (4)
C50.26484 (17)0.52696 (17)0.56774 (10)0.0430 (3)
C60.23057 (14)0.51821 (14)0.47044 (9)0.0344 (3)
C70.23780 (14)0.37460 (13)0.43405 (9)0.0345 (3)
C80.2708 (2)0.23544 (17)0.50650 (11)0.0475 (3)
C90.22683 (18)0.24468 (14)0.29458 (10)0.0387 (3)
C100.26636 (16)0.28390 (14)0.17541 (9)0.0379 (3)
C110.4468 (2)0.35385 (19)0.13855 (13)0.0535 (4)
C120.1233 (2)0.38992 (17)0.13821 (11)0.0502 (4)
C130.27857 (16)0.14083 (14)0.12936 (10)0.0378 (3)
C140.09534 (15)−0.05311 (13)0.12181 (8)0.0323 (3)
C150.24475 (17)−0.12727 (17)0.05479 (11)0.0411 (3)
C16−0.07908 (15)−0.12069 (13)0.15177 (8)0.0329 (3)
C17−0.10843 (17)−0.25178 (15)0.12019 (10)0.0395 (3)
C18−0.26901 (18)−0.31863 (17)0.15062 (11)0.0464 (3)
C19−0.40732 (18)−0.25416 (18)0.21474 (10)0.0474 (3)
C20−0.38434 (17)−0.12466 (17)0.24715 (10)0.0452 (3)
C21−0.22264 (16)−0.05565 (15)0.21614 (9)0.0384 (3)
H010.170 (2)0.545 (2)0.3073 (15)0.079 (6)*
H20.162 (2)0.8773 (19)0.3937 (13)0.054 (4)*
H30.223 (2)0.8850 (18)0.5615 (12)0.050 (4)*
H40.291 (2)0.664 (2)0.6686 (15)0.072 (5)*
H50.292 (2)0.4369 (19)0.6115 (13)0.054 (4)*
H8B0.194 (2)0.2313 (19)0.5766 (14)0.065 (5)*
H8C0.388 (3)0.231 (2)0.5152 (16)0.084 (6)*
H8A0.246 (3)0.148 (3)0.4832 (17)0.089 (6)*
H9A0.327 (2)0.1723 (18)0.3147 (12)0.054 (4)*
H9B0.115 (2)0.1914 (18)0.3175 (12)0.047 (4)*
H11A0.476 (2)0.375 (2)0.0579 (15)0.068 (5)*
H11C0.542 (3)0.285 (2)0.1658 (14)0.072 (5)*
H11B0.444 (2)0.445 (2)0.1650 (14)0.065 (5)*
H12C0.117 (2)0.482 (2)0.1598 (14)0.066 (5)*
H12B0.140 (2)0.4148 (19)0.0638 (14)0.062 (5)*
H12A−0.003 (3)0.344 (2)0.1627 (15)0.072 (5)*
H13B0.3711 (19)0.0670 (17)0.1561 (11)0.044 (4)*
H13A0.3126 (19)0.1690 (16)0.0504 (12)0.044 (4)*
H02−0.080 (3)0.098 (2)0.2212 (15)0.078 (6)*
H20−0.481 (2)−0.078 (2)0.2925 (13)0.062 (5)*
H19−0.523 (2)−0.3005 (19)0.2356 (13)0.061 (4)*
H18−0.285 (2)−0.4125 (19)0.1276 (12)0.058 (4)*
H17−0.012 (2)−0.2981 (17)0.0743 (12)0.051 (4)*
H15A0.353 (3)−0.080 (2)0.0387 (16)0.084 (6)*
H15B0.274 (3)−0.223 (3)0.0876 (16)0.082 (6)*
H15C0.212 (2)−0.149 (2)−0.0053 (15)0.070 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0605 (6)0.0362 (5)0.0397 (5)−0.0023 (4)−0.0153 (4)−0.0034 (4)
O20.0479 (5)0.0556 (6)0.0603 (6)0.0028 (5)0.0009 (5)−0.0310 (5)
N10.0416 (5)0.0328 (6)0.0345 (5)−0.0006 (4)−0.0063 (4)−0.0067 (4)
N20.0390 (5)0.0333 (6)0.0367 (5)0.0016 (4)−0.0063 (4)−0.0098 (4)
C10.0323 (5)0.0390 (7)0.0343 (6)−0.0049 (5)−0.0006 (5)−0.0070 (5)
C20.0430 (6)0.0372 (7)0.0460 (7)−0.0058 (5)0.0006 (6)−0.0083 (6)
C30.0446 (7)0.0480 (8)0.0510 (8)−0.0114 (6)0.0043 (6)−0.0220 (6)
C40.0467 (7)0.0618 (10)0.0400 (7)−0.0077 (6)−0.0038 (6)−0.0203 (6)
C50.0413 (7)0.0511 (8)0.0368 (6)−0.0024 (6)−0.0072 (6)−0.0090 (6)
C60.0290 (5)0.0396 (7)0.0335 (6)−0.0023 (4)−0.0018 (5)−0.0081 (5)
C70.0297 (5)0.0364 (7)0.0354 (6)−0.0016 (4)−0.0035 (5)−0.0044 (5)
C80.0551 (8)0.0426 (8)0.0423 (7)0.0012 (6)−0.0104 (7)−0.0013 (6)
C90.0471 (7)0.0303 (6)0.0381 (6)−0.0020 (5)−0.0072 (5)−0.0062 (5)
C100.0452 (6)0.0306 (6)0.0368 (6)−0.0024 (5)−0.0044 (5)−0.0074 (5)
C110.0588 (9)0.0448 (9)0.0543 (8)−0.0171 (7)0.0058 (7)−0.0163 (7)
C120.0741 (10)0.0347 (8)0.0435 (7)0.0099 (7)−0.0168 (7)−0.0103 (6)
C130.0389 (6)0.0348 (7)0.0392 (6)−0.0012 (5)−0.0036 (5)−0.0108 (5)
C140.0364 (6)0.0316 (6)0.0297 (5)0.0046 (4)−0.0095 (5)−0.0061 (4)
C150.0378 (6)0.0407 (8)0.0460 (7)0.0037 (5)−0.0051 (6)−0.0166 (6)
C160.0363 (6)0.0358 (7)0.0275 (5)0.0035 (5)−0.0099 (5)−0.0054 (4)
C170.0417 (6)0.0413 (7)0.0375 (6)0.0004 (5)−0.0108 (5)−0.0099 (5)
C180.0488 (7)0.0499 (8)0.0445 (7)−0.0099 (6)−0.0138 (6)−0.0099 (6)
C190.0398 (7)0.0662 (10)0.0367 (6)−0.0111 (6)−0.0113 (6)−0.0023 (6)
C200.0370 (6)0.0622 (9)0.0351 (6)0.0033 (6)−0.0060 (5)−0.0085 (6)
C210.0392 (6)0.0458 (7)0.0310 (6)0.0042 (5)−0.0084 (5)−0.0095 (5)

Geometric parameters (Å, °)

O1—C11.3443 (15)C10—C121.527 (2)
O1—H011.01 (2)C10—C111.5347 (19)
O2—C211.3439 (16)C10—C131.5379 (17)
O2—H021.02 (2)C11—H11A1.039 (18)
N1—C71.2833 (15)C11—H11C1.02 (2)
N1—C91.4622 (15)C11—H11B0.961 (19)
N2—C141.2888 (15)C12—H12C0.934 (19)
N2—C131.4622 (16)C12—H12B0.962 (18)
C1—C21.3987 (18)C12—H12A1.06 (2)
C1—C61.4147 (18)C13—H13B1.026 (15)
C2—C31.380 (2)C13—H13A1.022 (15)
C2—H20.991 (17)C14—C161.4816 (17)
C3—C41.380 (2)C14—C151.5061 (15)
C3—H30.973 (16)C15—H15A0.94 (2)
C4—C51.3844 (19)C15—H15B0.94 (2)
C4—H40.980 (19)C15—H15C0.95 (2)
C5—C61.4014 (17)C16—C171.3964 (17)
C5—H50.959 (17)C16—C211.4191 (16)
C6—C71.4799 (17)C17—C181.3835 (19)
C7—C81.4988 (19)C17—H170.984 (15)
C8—H8B0.994 (18)C18—C191.390 (2)
C8—H8C0.94 (2)C18—H180.991 (17)
C8—H8A0.96 (2)C19—C201.374 (2)
C9—C101.5374 (17)C19—H190.986 (18)
C9—H9A1.031 (17)C20—C211.4004 (19)
C9—H9B0.994 (16)C20—H200.982 (17)
C1—O1—H01101.4 (11)C10—C11—H11C110.7 (11)
C21—O2—H02105.2 (11)H11A—C11—H11C110.3 (14)
C7—N1—C9122.61 (10)C10—C11—H11B109.6 (10)
C14—N2—C13121.02 (9)H11A—C11—H11B110.0 (15)
O1—C1—C2118.27 (12)H11C—C11—H11B107.8 (15)
O1—C1—C6121.67 (11)C10—C12—H12C113.3 (11)
C2—C1—C6120.06 (12)C10—C12—H12B113.7 (10)
C3—C2—C1120.32 (13)H12C—C12—H12B103.8 (15)
C3—C2—H2123.2 (9)C10—C12—H12A111.7 (11)
C1—C2—H2116.5 (9)H12C—C12—H12A108.6 (14)
C4—C3—C2120.55 (13)H12B—C12—H12A105.0 (15)
C4—C3—H3119.5 (9)N2—C13—C10112.30 (9)
C2—C3—H3119.9 (9)N2—C13—H13B107.6 (8)
C3—C4—C5119.67 (13)C10—C13—H13B110.9 (8)
C3—C4—H4120.6 (11)N2—C13—H13A108.3 (8)
C5—C4—H4119.8 (11)C10—C13—H13A107.7 (8)
C4—C5—C6121.73 (14)H13B—C13—H13A110.0 (11)
C4—C5—H5119.8 (10)N2—C14—C16117.60 (9)
C6—C5—H5118.5 (10)N2—C14—C15123.32 (11)
C5—C6—C1117.67 (12)C16—C14—C15119.08 (10)
C5—C6—C7121.47 (12)C14—C15—H15A115.5 (12)
C1—C6—C7120.86 (11)C14—C15—H15B112.0 (12)
N1—C7—C6117.17 (11)H15A—C15—H15B102.8 (17)
N1—C7—C8124.21 (12)C14—C15—H15C111.9 (11)
C6—C7—C8118.62 (11)H15A—C15—H15C112.1 (17)
C7—C8—H8B112.3 (10)H15B—C15—H15C101.2 (17)
C7—C8—H8C109.6 (13)C17—C16—C21117.28 (11)
H8B—C8—H8C107.1 (16)C17—C16—C14121.82 (10)
C7—C8—H8A112.6 (13)C21—C16—C14120.88 (11)
H8B—C8—H8A104.6 (16)C18—C17—C16122.33 (12)
H8C—C8—H8A110.4 (17)C18—C17—H17118.7 (9)
N1—C9—C10110.72 (10)C16—C17—H17119.0 (9)
N1—C9—H9A111.3 (9)C17—C18—C19119.50 (13)
C10—C9—H9A107.0 (8)C17—C18—H18120.2 (9)
N1—C9—H9B111.3 (9)C19—C18—H18120.3 (9)
C10—C9—H9B108.6 (9)C20—C19—C18120.05 (13)
H9A—C9—H9B107.8 (13)C20—C19—H19120.2 (10)
C12—C10—C11110.49 (12)C18—C19—H19119.8 (10)
C12—C10—C9110.72 (10)C19—C20—C21120.84 (12)
C11—C10—C9109.04 (11)C19—C20—H20120.5 (10)
C12—C10—C13110.17 (11)C21—C20—H20118.6 (10)
C11—C10—C13107.19 (10)O2—C21—C20118.48 (11)
C9—C10—C13109.15 (10)O2—C21—C16121.53 (11)
C10—C11—H11A108.6 (10)C20—C21—C16119.99 (12)
O1—C1—C2—C3−179.89 (11)C14—N2—C13—C10178.35 (10)
C6—C1—C2—C3−0.12 (18)C12—C10—C13—N2−57.39 (14)
C1—C2—C3—C4−0.5 (2)C11—C10—C13—N2−177.66 (11)
C2—C3—C4—C50.3 (2)C9—C10—C13—N264.38 (14)
C3—C4—C5—C60.4 (2)C13—N2—C14—C16−179.70 (10)
C4—C5—C6—C1−0.91 (18)C13—N2—C14—C150.90 (18)
C4—C5—C6—C7178.31 (11)N2—C14—C16—C17−178.97 (10)
O1—C1—C6—C5−179.45 (10)C15—C14—C16—C170.45 (17)
C2—C1—C6—C50.78 (17)N2—C14—C16—C21−0.40 (17)
O1—C1—C6—C71.32 (17)C15—C14—C16—C21179.02 (11)
C2—C1—C6—C7−178.45 (10)C21—C16—C17—C18−0.89 (19)
C9—N1—C7—C6177.71 (10)C14—C16—C17—C18177.73 (11)
C9—N1—C7—C8−1.80 (19)C16—C17—C18—C190.1 (2)
C5—C6—C7—N1−175.41 (11)C17—C18—C19—C200.2 (2)
C1—C6—C7—N13.79 (16)C18—C19—C20—C210.2 (2)
C5—C6—C7—C84.13 (17)C19—C20—C21—O2179.69 (12)
C1—C6—C7—C8−176.68 (11)C19—C20—C21—C16−1.0 (2)
C7—N1—C9—C10−158.41 (11)C17—C16—C21—O2−179.41 (11)
N1—C9—C10—C12−59.23 (14)C14—C16—C21—O21.96 (18)
N1—C9—C10—C1162.54 (14)C17—C16—C21—C201.33 (18)
N1—C9—C10—C13179.33 (10)C14—C16—C21—C20−177.30 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H01···N11.01 (2)1.56 (2)2.517 (1)156 (2)
O2—H02···N21.02 (2)1.59 (2)2.526 (1)151 (2)
C19—H19···O1i0.99 (2)2.54 (2)3.488 (2)174 (1)
C3—H3···O2i0.97 (2)2.61 (2)3.291 (2)128 (1)

Symmetry codes: i; (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2213).

References

  • Barati, K., Habibi, M. H., Montazerozohori, M., Harrington, R. W. & Clegg, W. (2009). J. Coord. Chem.62, 417–426.
  • Baseer, M. A., Jadhav, V. D., Phule, R. M., Archana, Y. V. & &Vibhute, Y. B. (2000). Orient. J. Chem.16, 553–556.
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun.7, 83–90.
  • El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429–1438.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Habibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007b). Acta Cryst. E63, m1998.
  • Habibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007c). Acta Cryst. E63, m2304.
  • Habibi, M. H., Montazerozohori, M., Barati, K., Harrington, R. W. & Clegg, W. (2007a). Acta Cryst. C63, m592–m594. [PubMed]
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Kabeer, A. S., Baseer, M. A. & Mote, N. A. (2001). Asian J. Chem.13, 496–500.
  • Kuzmin, V. E., Lozitsky, V. P., Kamalov, G. L., Lozitskaya, R. N., Zheltvay, A. I., Fedtchouk, A. S. & Kryzhanovsky, D. N. (2000). Acta Biochim. Pol.47, 867–875. [PubMed]
  • More, P. G., Bhalvankar, R. B. & Pattar, S. C. (2001). J. Indian Chem. Soc.78, 474–475.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography