PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1707.
Published online 2009 June 27. doi:  10.1107/S1600536809023770
PMCID: PMC2969253

4-Methyl-3-[4-(3-pyrid­yl)pyrimidin-2-yl­oxy]aniline

Abstract

In the title compound, C16H14N4O, there are inter­molecular N—H(...)N hydrogen bonds which may be effective in stabilizing the crystal. The title compound is an important medicament and is used in the synthesis of anti­tumour drugs.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-65-o1707-scheme1.jpg

Experimental

Crystal data

  • C16H14N4O
  • M r = 278.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1707-efi1.jpg
  • a = 8.5800 (17) Å
  • b = 20.360 (4) Å
  • c = 8.0780 (16) Å
  • β = 98.29 (3)°
  • V = 1396.4 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.983, T max = 0.991
  • 2698 measured reflections
  • 2526 independent reflections
  • 1587 reflections with I > 2σ(I)
  • R int = 0.018
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.170
  • S = 1.01
  • 2526 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809023770/pv2165sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023770/pv2165Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Some derivatives of benzenamine are important medical materials. We report here the crystal structure of the title compound, (I), which was synthesized by the reaction of tert-butyl-4-methyl-3-(4-(3-pyridinyl)pyrimidin-2 -yloxy)phenylcarbamate and dichloromethane with trifluoroacetic acid. The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles in (I) are within normal ranges (Allen et al. 1987). The structure is stabilized by N—H···N type hydrogen bonds (Table 1 and Fig. 2).

Experimental

In a three neck bottom flask containing dichloromethane (65 ml) and trifluoroacetic acid (20 ml) was added tert-butyl-4-methyl-3- (4-(3-pyridinyl)pyrimidin-2-yloxy)phenylcarbamate (7.5 g) at 273 K. After the addition of all chemicals, the flask was taken off the ice-water bath and the reaction was allowed to take place for 6 h at room temperature. Neutralized with sodium bicarbonate and separated the dichloromethane and aqueous layers. On evaporation of dichloromethane a solid product was obtained. Crystals of (I) suitable for X-ray diffraction were obstained by slow evaporation of a cyclohexane solution.

Refinement

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93, 0.96 and 0.86 Å, for aryl, methyl and amino H-atoms, respectively, and were included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Figures

Fig. 1.
The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.
A packing diagram of (I). The intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C16H14N4OF(000) = 584
Mr = 278.31Dx = 1.324 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.5800 (17) Åθ = 9–13°
b = 20.360 (4) ŵ = 0.09 mm1
c = 8.0780 (16) ÅT = 293 K
β = 98.29 (3)°Block, colorless
V = 1396.4 (5) Å30.20 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1587 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
graphiteθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = −10→0
Absorption correction: ψ scan (North et al., 1968)k = 0→24
Tmin = 0.983, Tmax = 0.991l = −9→9
2698 measured reflections3 standard reflections every 200 reflections
2526 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.170w = 1/[σ2(Fo2) + (0.06P)2 + 1.4P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2526 reflectionsΔρmax = 0.28 e Å3
190 parametersΔρmin = −0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O0.1194 (2)0.51325 (11)0.7760 (3)0.0508 (6)
N1−0.2002 (3)0.66654 (13)1.0241 (4)0.0543 (8)
H1A−0.25370.70241.01860.065*
H1B−0.19550.64191.11110.065*
C10.1120 (5)0.5926 (2)0.4732 (5)0.0680 (11)
H1C0.16580.55150.49630.102*
H1D0.18620.62580.45250.102*
H1E0.03350.58790.37650.102*
N20.3246 (3)0.44734 (12)0.7623 (3)0.0416 (7)
C20.0341 (4)0.61219 (17)0.6213 (4)0.0460 (8)
N30.3632 (3)0.56324 (13)0.7919 (4)0.0497 (7)
C3−0.0526 (4)0.66983 (17)0.6214 (4)0.0498 (9)
H3B−0.05930.69730.52850.060*
C4−0.1290 (4)0.68813 (16)0.7523 (4)0.0480 (9)
H4A−0.18570.72720.74680.058*
N40.4792 (4)0.26228 (15)0.6373 (4)0.0649 (9)
C5−0.1216 (3)0.64847 (14)0.8928 (4)0.0405 (8)
C6−0.0318 (3)0.59152 (14)0.8984 (4)0.0395 (8)
H6A−0.02300.56450.99210.047*
C70.0441 (3)0.57516 (15)0.7653 (4)0.0403 (8)
C80.2772 (4)0.50942 (15)0.7753 (4)0.0412 (8)
C90.4799 (4)0.43896 (15)0.7646 (4)0.0406 (8)
C100.5823 (4)0.49200 (17)0.7776 (5)0.0522 (9)
H10A0.68980.48630.77730.063*
C110.5179 (4)0.55349 (17)0.7909 (5)0.0556 (10)
H11A0.58450.58980.79950.067*
C120.5341 (4)0.37050 (15)0.7517 (4)0.0411 (8)
C130.4408 (4)0.32551 (17)0.6553 (5)0.0526 (9)
H13A0.34470.34000.59900.063*
C140.6177 (5)0.24293 (19)0.7200 (5)0.0630 (11)
H14A0.64760.19930.71040.076*
C150.7182 (5)0.28438 (19)0.8184 (5)0.0619 (10)
H15A0.81360.26870.87370.074*
C160.6774 (4)0.34860 (18)0.8347 (5)0.0531 (9)
H16A0.74450.37720.90040.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O0.0398 (13)0.0379 (12)0.0783 (18)−0.0001 (10)0.0208 (11)−0.0024 (11)
N10.066 (2)0.0395 (16)0.0609 (19)0.0056 (14)0.0227 (16)−0.0018 (14)
C10.069 (3)0.083 (3)0.055 (2)−0.006 (2)0.019 (2)0.000 (2)
N20.0410 (16)0.0358 (14)0.0497 (17)−0.0021 (12)0.0123 (12)−0.0049 (12)
C20.0391 (18)0.053 (2)0.046 (2)−0.0059 (16)0.0087 (15)0.0002 (16)
N30.0463 (17)0.0412 (16)0.0619 (19)−0.0045 (13)0.0084 (14)−0.0053 (14)
C30.0455 (19)0.052 (2)0.051 (2)−0.0074 (17)0.0033 (16)0.0154 (17)
C40.0435 (19)0.0358 (18)0.065 (2)0.0023 (15)0.0084 (17)0.0086 (16)
N40.062 (2)0.0462 (18)0.090 (3)−0.0014 (16)0.0242 (18)−0.0145 (17)
C50.0369 (17)0.0353 (17)0.050 (2)−0.0061 (14)0.0070 (14)−0.0037 (15)
C60.0381 (17)0.0328 (17)0.048 (2)−0.0047 (14)0.0077 (15)0.0052 (14)
C70.0340 (17)0.0313 (16)0.057 (2)−0.0029 (13)0.0106 (15)−0.0013 (15)
C80.0406 (18)0.0393 (18)0.0453 (19)−0.0014 (15)0.0116 (14)−0.0034 (15)
C90.0393 (18)0.0424 (18)0.0414 (18)−0.0007 (14)0.0101 (14)−0.0043 (14)
C100.0387 (18)0.048 (2)0.071 (3)−0.0050 (16)0.0125 (17)−0.0057 (18)
C110.045 (2)0.045 (2)0.076 (3)−0.0100 (16)0.0074 (18)−0.0075 (18)
C120.0387 (18)0.0407 (18)0.0462 (19)−0.0019 (14)0.0143 (15)−0.0032 (15)
C130.0426 (19)0.047 (2)0.070 (2)−0.0003 (16)0.0138 (17)−0.0118 (18)
C140.070 (3)0.044 (2)0.081 (3)0.010 (2)0.033 (2)0.000 (2)
C150.058 (2)0.057 (2)0.072 (3)0.018 (2)0.012 (2)0.006 (2)
C160.050 (2)0.054 (2)0.056 (2)0.0034 (17)0.0087 (17)−0.0060 (17)

Geometric parameters (Å, °)

O—C81.357 (4)N4—C141.336 (5)
O—C71.413 (4)N4—C131.342 (4)
N1—C51.387 (4)C5—C61.389 (4)
N1—H1A0.8600C6—C71.376 (4)
N1—H1B0.8600C6—H6A0.9300
C1—C21.506 (5)C9—C101.387 (4)
C1—H1C0.9600C9—C121.478 (4)
C1—H1D0.9600C10—C111.379 (5)
C1—H1E0.9600C10—H10A0.9300
N2—C81.337 (4)C11—H11A0.9300
N2—C91.340 (4)C12—C131.381 (5)
C2—C71.379 (5)C12—C161.386 (5)
C2—C31.389 (5)C13—H13A0.9300
N3—C81.317 (4)C14—C151.375 (5)
N3—C111.344 (4)C14—H14A0.9300
C3—C41.374 (5)C15—C161.365 (5)
C3—H3B0.9300C15—H15A0.9300
C4—C51.387 (4)C16—H16A0.9300
C4—H4A0.9300
C8—O—C7119.9 (2)C6—C7—O115.6 (3)
C5—N1—H1A120.0C2—C7—O120.8 (3)
C5—N1—H1B120.0N3—C8—N2128.5 (3)
H1A—N1—H1B120.0N3—C8—O119.8 (3)
C2—C1—H1C109.5N2—C8—O111.7 (3)
C2—C1—H1D109.5N2—C9—C10121.3 (3)
H1C—C1—H1D109.5N2—C9—C12116.2 (3)
C2—C1—H1E109.5C10—C9—C12122.5 (3)
H1C—C1—H1E109.5C11—C10—C9117.1 (3)
H1D—C1—H1E109.5C11—C10—H10A121.4
C8—N2—C9115.6 (3)C9—C10—H10A121.4
C7—C2—C3115.5 (3)N3—C11—C10122.8 (3)
C7—C2—C1123.0 (3)N3—C11—H11A118.6
C3—C2—C1121.5 (3)C10—C11—H11A118.6
C8—N3—C11114.6 (3)C13—C12—C16117.5 (3)
C4—C3—C2123.0 (3)C13—C12—C9120.1 (3)
C4—C3—H3B118.5C16—C12—C9122.4 (3)
C2—C3—H3B118.5N4—C13—C12124.5 (3)
C3—C4—C5120.1 (3)N4—C13—H13A117.8
C3—C4—H4A120.0C12—C13—H13A117.8
C5—C4—H4A120.0N4—C14—C15123.1 (3)
C14—N4—C13116.3 (3)N4—C14—H14A118.4
C4—C5—N1120.1 (3)C15—C14—H14A118.4
C4—C5—C6118.2 (3)C16—C15—C14119.7 (4)
N1—C5—C6121.7 (3)C16—C15—H15A120.2
C7—C6—C5119.9 (3)C14—C15—H15A120.2
C7—C6—H6A120.0C15—C16—C12118.9 (4)
C5—C6—H6A120.0C15—C16—H16A120.5
C6—C7—C2123.2 (3)C12—C16—H16A120.5
C7—C2—C3—C4−2.5 (5)C7—O—C8—N2−171.2 (3)
C1—C2—C3—C4178.0 (3)C8—N2—C9—C10−0.8 (5)
C2—C3—C4—C50.0 (5)C8—N2—C9—C12179.5 (3)
C3—C4—C5—N1−179.2 (3)N2—C9—C10—C111.1 (5)
C3—C4—C5—C61.9 (5)C12—C9—C10—C11−179.2 (3)
C4—C5—C6—C7−1.3 (4)C8—N3—C11—C10−1.5 (5)
N1—C5—C6—C7179.8 (3)C9—C10—C11—N30.1 (6)
C5—C6—C7—C2−1.2 (5)N2—C9—C12—C1334.5 (4)
C5—C6—C7—O−174.0 (3)C10—C9—C12—C13−145.2 (3)
C3—C2—C7—C63.1 (5)N2—C9—C12—C16−145.1 (3)
C1—C2—C7—C6−177.4 (3)C10—C9—C12—C1635.2 (5)
C3—C2—C7—O175.4 (3)C14—N4—C13—C120.1 (5)
C1—C2—C7—O−5.0 (5)C16—C12—C13—N40.2 (5)
C8—O—C7—C6−119.7 (3)C9—C12—C13—N4−179.3 (3)
C8—O—C7—C267.4 (4)C13—N4—C14—C15−0.3 (6)
C11—N3—C8—N21.9 (5)N4—C14—C15—C160.0 (6)
C11—N3—C8—O179.5 (3)C14—C15—C16—C120.4 (6)
C9—N2—C8—N3−0.8 (5)C13—C12—C16—C15−0.5 (5)
C9—N2—C8—O−178.5 (3)C9—C12—C16—C15179.1 (3)
C7—O—C8—N310.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i0.862.473.214 (4)145
N1—H1B···N2ii0.862.433.166 (4)144

Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2165).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography