PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m734.
Published online 2009 June 6. doi:  10.1107/S1600536809020741
PMCID: PMC2969243

Diaqua­[(E)-2-(2-oxidobenzyl­idene­amino)-2-phenyl­acetato]zinc(II) dimethyl sulfoxide monosolvate

Abstract

In the title compound, [Zn(C15H11NO3)(H2O)2]·C2H6OS, the Zn(II) ion is coordinated by two O atoms and one N atom of the deprotonated chelate ligand and two water mol­ecules in a distorted trigonal bipyramidal coordination environment. A linear supra­molecular structure built from O—H(...)O hydrogen bonds runs parallel to [100].

Related literature

For the synthesis of (E)-2-(2-hydroxy­benzyl­ideneamino)-2-phenyl­acetic acid, see Audriceth et al. (1954 [triangle]). For a related zinc complex, see: You et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m734-scheme1.jpg

Experimental

Crystal data

  • [Zn(C15H11NO3)(H2O)2]·C2H6OS
  • M r = 432.78
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m734-efi1.jpg
  • a = 7.331 (4) Å
  • b = 9.318 (5) Å
  • c = 14.578 (9) Å
  • α = 81.91 (2)°
  • β = 81.37 (2)°
  • γ = 80.18 (2)°
  • V = 963.4 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.42 mm−1
  • T = 291 K
  • 0.19 × 0.15 × 0.13 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.777, T max = 0.837
  • 9415 measured reflections
  • 4331 independent reflections
  • 3751 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.098
  • S = 1.15
  • 4331 reflections
  • 237 parameters
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020741/ng2591sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020741/ng2591Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 20272011) and Harbin University of Science and Technology.

supplementary crystallographic information

Comment

The continuous interest in designing and making novel Schiff base ligand and transition-metal complexes have persisted because of their impressive catalytic property. Recently, our group have reported a Schiff base and Zn(II) complex (You et al., 2008). As the continually working, we report a new title Schiff base complex, herein, synthesized by the reaction of (E)-2-(2-hydroxybenzylideneamino)-2-phenylacetic acid and Zn(OAc)2.

As shown in Fig. 1, ZnII ion is five-coordinate in a slightly distorted trigonal-bipyramidal coordination environment, two water molecules and one N formed the equatorial plane and two deprotonated O atoms take up the apices positions.

The cocrystalized dimethylsulfoxide molecules link the discrete coordinate compound to a one-dimensional tubal supramolecular structure, via the O—H···O hydrogen bonds parallel to [100] (Fig. 2).

Experimental

(E)-2-(2-hydroxybenzylideneamino)-2-phenylacetic acid was prepared of 2-amino-2-phenylacetic acid and 2-hydroxybenzaldehyde in aqueous solution (Audriceth et al., 1954). (E)-2-(2-hydroxybenzylideneamino)-2-phenylacetic acid (0.255 g, 1 mmol) and Zn(OAc)2 (0.190 g, 1 mmol) dissolved in hot aqueous solution (20 ml) then refluxed for 1 huor. After cooling to room temperature the solution was filtered, the residue was recrystaled in DMSO and methanol (10/1, V/V) solution, several days latter, a suitable for X-ray diffraction yellow crystal was obtained.

Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.98 Å (methylene C), C—H = 0.96 Å (methyl C) and with Uiso(H) = 1.2Ueq(C). Water H atoms were initially located in a difference Fourier map, but they were treated as riding on their parent atoms with O—H = 0.85 Å and with with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms.
Fig. 2.
A partial packing view, showing the one-dimensional tubal supramolecular structure. H atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

[Zn(C15H11NO3)(H2O)2]·C2H6OSZ = 2
Mr = 432.78F(000) = 448
Triclinic, P1Dx = 1.492 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.331 (4) ÅCell parameters from 8052 reflections
b = 9.318 (5) Åθ = 3.0–27.5°
c = 14.578 (9) ŵ = 1.42 mm1
α = 81.91 (2)°T = 291 K
β = 81.37 (2)°Block, colorless
γ = 80.18 (2)°0.19 × 0.15 × 0.13 mm
V = 963.4 (9) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer4331 independent reflections
Radiation source: fine-focus sealed tube3751 reflections with I > 2σ(I)
graphiteRint = 0.024
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −9→8
Tmin = 0.777, Tmax = 0.837k = −12→12
9415 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.15w = 1/[σ2(Fo2) + (0.0512P)2 + 0.2263P] where P = (Fo2 + 2Fc2)/3
4331 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.9379 (3)0.7675 (2)0.26445 (14)0.0316 (4)
C20.7789 (4)0.8689 (3)0.24967 (18)0.0451 (5)
H20.68910.84620.21760.054*
C30.7553 (5)1.0041 (3)0.2831 (2)0.0589 (7)
H30.64911.07190.27360.071*
C40.8891 (5)1.0382 (3)0.3305 (2)0.0671 (9)
H40.87181.12840.35350.080*
C51.0461 (5)0.9402 (3)0.3436 (2)0.0612 (8)
H51.13620.96430.37490.073*
C61.0726 (4)0.8041 (3)0.31051 (17)0.0457 (6)
H61.18060.73790.31930.055*
C70.9648 (3)0.6175 (2)0.23069 (14)0.0286 (4)
H71.07670.55820.25310.034*
C80.9913 (3)0.6342 (2)0.12286 (14)0.0287 (4)
C90.7835 (3)0.4801 (2)0.34886 (15)0.0339 (4)
H90.87210.48960.38620.041*
C100.6363 (3)0.3983 (2)0.39195 (15)0.0356 (5)
C110.6505 (4)0.3309 (3)0.48364 (17)0.0521 (6)
H110.75110.34250.51240.063*
C120.5219 (5)0.2490 (4)0.5320 (2)0.0635 (8)
H120.53530.20440.59230.076*
C130.3711 (5)0.2339 (4)0.4894 (2)0.0655 (8)
H130.28280.17810.52170.079*
C140.3488 (4)0.2995 (3)0.4004 (2)0.0559 (7)
H140.24440.28860.37430.067*
C150.4808 (3)0.3834 (3)0.34729 (15)0.0392 (5)
C160.1636 (4)0.2801 (3)0.1543 (2)0.0527 (6)
H16A0.22550.33520.18770.079*
H16B0.05060.25730.19190.079*
H16C0.13410.33720.09690.079*
C170.1686 (4)0.0495 (3)0.0617 (2)0.0495 (6)
H17A0.12900.12610.01430.074*
H17B0.06120.02010.10140.074*
H17C0.2381−0.03300.03270.074*
N10.8040 (2)0.54080 (19)0.26458 (12)0.0301 (4)
O10.8636 (2)0.60996 (18)0.08213 (10)0.0366 (3)
O21.1404 (2)0.67381 (19)0.08264 (11)0.0400 (4)
O30.4514 (2)0.4435 (2)0.26298 (12)0.0505 (4)
O40.6986 (3)0.3510 (2)0.09429 (13)0.0581 (5)
H230.61900.29420.09510.087*
H240.75710.36340.03950.087*
O50.4726 (2)0.7027 (2)0.11810 (12)0.0471 (4)
H210.35780.69690.11930.071*
H220.51740.73090.06260.071*
O60.4740 (2)0.16387 (19)0.06180 (12)0.0447 (4)
S10.31254 (8)0.11488 (6)0.12970 (4)0.03825 (14)
Zn10.63958 (3)0.52441 (3)0.167315 (16)0.03534 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0338 (10)0.0317 (10)0.0280 (9)−0.0083 (8)0.0023 (8)−0.0019 (8)
C20.0419 (13)0.0445 (13)0.0463 (13)−0.0040 (11)−0.0015 (10)−0.0040 (11)
C30.0648 (18)0.0380 (13)0.0642 (18)0.0045 (13)0.0099 (14)−0.0074 (13)
C40.104 (3)0.0411 (15)0.0562 (17)−0.0236 (17)0.0161 (17)−0.0183 (13)
C50.080 (2)0.0554 (17)0.0589 (17)−0.0311 (16)−0.0067 (15)−0.0191 (14)
C60.0504 (14)0.0492 (14)0.0420 (13)−0.0155 (12)−0.0069 (11)−0.0102 (11)
C70.0240 (9)0.0327 (10)0.0301 (10)−0.0082 (8)−0.0031 (7)−0.0031 (8)
C80.0257 (9)0.0303 (10)0.0296 (9)−0.0069 (8)0.0021 (7)−0.0040 (8)
C90.0360 (11)0.0367 (11)0.0287 (10)−0.0072 (9)−0.0026 (8)−0.0023 (8)
C100.0412 (12)0.0338 (11)0.0285 (10)−0.0080 (9)0.0059 (9)−0.0009 (8)
C110.0544 (15)0.0632 (16)0.0338 (12)−0.0107 (13)0.0012 (11)0.0063 (11)
C120.070 (2)0.071 (2)0.0398 (14)−0.0145 (16)0.0081 (13)0.0177 (13)
C130.073 (2)0.0637 (18)0.0534 (16)−0.0298 (16)0.0221 (15)0.0079 (14)
C140.0502 (15)0.0702 (18)0.0470 (14)−0.0287 (14)0.0107 (12)−0.0001 (13)
C150.0409 (12)0.0429 (12)0.0321 (11)−0.0141 (10)0.0088 (9)−0.0035 (9)
C160.0515 (15)0.0485 (14)0.0578 (16)−0.0065 (12)0.0028 (12)−0.0166 (12)
C170.0400 (13)0.0417 (13)0.0701 (17)−0.0152 (11)−0.0069 (12)−0.0076 (12)
N10.0288 (8)0.0341 (9)0.0271 (8)−0.0091 (7)−0.0001 (7)−0.0014 (7)
O10.0290 (7)0.0560 (10)0.0274 (7)−0.0179 (7)−0.0024 (6)−0.0014 (7)
O20.0281 (7)0.0587 (10)0.0355 (8)−0.0200 (7)0.0042 (6)−0.0064 (7)
O30.0414 (9)0.0763 (12)0.0367 (9)−0.0303 (9)−0.0009 (7)0.0050 (8)
O40.0618 (12)0.0754 (13)0.0467 (10)−0.0448 (10)0.0172 (9)−0.0239 (9)
O50.0268 (8)0.0655 (11)0.0470 (9)−0.0145 (8)−0.0050 (7)0.0094 (8)
O60.0350 (8)0.0511 (10)0.0497 (10)−0.0179 (7)0.0021 (7)−0.0060 (8)
S10.0338 (3)0.0366 (3)0.0427 (3)−0.0104 (2)−0.0032 (2)0.0048 (2)
Zn10.02999 (15)0.05017 (18)0.02839 (14)−0.01813 (11)−0.00285 (9)0.00044 (10)

Geometric parameters (Å, °)

C1—C61.386 (3)C12—H120.9300
C1—C21.393 (3)C13—C141.376 (4)
C1—C71.519 (3)C13—H130.9300
C2—C31.388 (4)C14—C151.418 (3)
C2—H20.9300C14—H140.9300
C3—C41.383 (5)C15—O31.310 (3)
C3—H30.9300C16—S11.777 (3)
C4—C51.361 (5)C16—H16A0.9600
C4—H40.9300C16—H16B0.9600
C5—C61.393 (4)C16—H16C0.9600
C5—H50.9300C17—S11.780 (3)
C6—H60.9300C17—H17A0.9600
C7—N11.469 (3)C17—H17B0.9600
C7—C81.544 (3)C17—H17C0.9600
C7—H70.9800N1—Zn12.0305 (19)
C8—O11.248 (2)O1—Zn12.1047 (17)
C8—O21.248 (2)O3—Zn11.9742 (18)
C9—N11.276 (3)O4—Zn12.009 (2)
C9—C101.443 (3)O4—H230.8500
C9—H90.9300O4—H240.8500
C10—C111.405 (3)O5—Zn12.0015 (19)
C10—C151.430 (3)O5—H210.8500
C11—C121.365 (4)O5—H220.8499
C11—H110.9300O6—S11.5147 (18)
C12—C131.382 (5)
C6—C1—C2119.6 (2)C13—C14—C15121.7 (3)
C6—C1—C7119.8 (2)C13—C14—H14119.2
C2—C1—C7120.64 (19)C15—C14—H14119.2
C3—C2—C1119.6 (3)O3—C15—C14118.8 (2)
C3—C2—H2120.2O3—C15—C10124.8 (2)
C1—C2—H2120.2C14—C15—C10116.4 (2)
C4—C3—C2120.3 (3)S1—C16—H16A109.5
C4—C3—H3119.9S1—C16—H16B109.5
C2—C3—H3119.9H16A—C16—H16B109.5
C5—C4—C3120.2 (2)S1—C16—H16C109.5
C5—C4—H4119.9H16A—C16—H16C109.5
C3—C4—H4119.9H16B—C16—H16C109.5
C4—C5—C6120.4 (3)S1—C17—H17A109.5
C4—C5—H5119.8S1—C17—H17B109.5
C6—C5—H5119.8H17A—C17—H17B109.5
C1—C6—C5119.9 (3)S1—C17—H17C109.5
C1—C6—H6120.1H17A—C17—H17C109.5
C5—C6—H6120.1H17B—C17—H17C109.5
N1—C7—C1111.97 (16)C9—N1—C7119.69 (18)
N1—C7—C8108.26 (15)C9—N1—Zn1124.24 (15)
C1—C7—C8109.72 (17)C7—N1—Zn1115.85 (13)
N1—C7—H7108.9C8—O1—Zn1116.45 (13)
C1—C7—H7108.9C15—O3—Zn1125.28 (15)
C8—C7—H7108.9Zn1—O4—H23121.1
O1—C8—O2124.70 (19)Zn1—O4—H24117.3
O1—C8—C7118.68 (17)H23—O4—H24109.4
O2—C8—C7116.62 (18)Zn1—O5—H21118.0
N1—C9—C10126.4 (2)Zn1—O5—H22108.9
N1—C9—H9116.8H21—O5—H22109.0
C10—C9—H9116.8O6—S1—C16104.74 (13)
C11—C10—C15119.5 (2)O6—S1—C17106.13 (13)
C11—C10—C9116.5 (2)C16—S1—C1798.10 (13)
C15—C10—C9124.1 (2)O3—Zn1—O597.31 (8)
C12—C11—C10122.4 (3)O3—Zn1—O496.26 (9)
C12—C11—H11118.8O5—Zn1—O4118.61 (9)
C10—C11—H11118.8O3—Zn1—N192.18 (8)
C11—C12—C13118.6 (3)O5—Zn1—N1119.53 (8)
C11—C12—H12120.7O4—Zn1—N1119.38 (9)
C13—C12—H12120.7O3—Zn1—O1171.33 (6)
C14—C13—C12121.5 (3)O5—Zn1—O187.49 (8)
C14—C13—H13119.3O4—Zn1—O187.69 (7)
C12—C13—H13119.3N1—Zn1—O179.16 (7)
C6—C1—C2—C3−1.5 (4)C11—C10—C15—C140.0 (3)
C7—C1—C2—C3178.5 (2)C9—C10—C15—C14−179.7 (2)
C1—C2—C3—C40.2 (4)C10—C9—N1—C7−178.51 (19)
C2—C3—C4—C50.9 (5)C10—C9—N1—Zn1−4.2 (3)
C3—C4—C5—C6−0.8 (5)C1—C7—N1—C9−77.4 (2)
C2—C1—C6—C51.6 (4)C8—C7—N1—C9161.56 (19)
C7—C1—C6—C5−178.4 (2)C1—C7—N1—Zn1107.87 (16)
C4—C5—C6—C1−0.5 (4)C8—C7—N1—Zn1−13.2 (2)
C6—C1—C7—N1126.6 (2)O2—C8—O1—Zn1174.12 (17)
C2—C1—C7—N1−53.4 (3)C7—C8—O1—Zn1−7.0 (2)
C6—C1—C7—C8−113.2 (2)C14—C15—O3—Zn1−165.10 (19)
C2—C1—C7—C866.9 (3)C10—C15—O3—Zn116.3 (3)
N1—C7—C8—O113.2 (3)C15—O3—Zn1—O5−139.4 (2)
C1—C7—C8—O1−109.3 (2)C15—O3—Zn1—O4100.7 (2)
N1—C7—C8—O2−167.87 (18)C15—O3—Zn1—N1−19.2 (2)
C1—C7—C8—O269.7 (2)C9—N1—Zn1—O313.31 (19)
N1—C9—C10—C11174.9 (2)C7—N1—Zn1—O3−172.18 (14)
N1—C9—C10—C15−5.4 (4)C9—N1—Zn1—O5112.98 (18)
C15—C10—C11—C121.0 (4)C7—N1—Zn1—O5−72.52 (15)
C9—C10—C11—C12−179.3 (3)C9—N1—Zn1—O4−85.13 (19)
C10—C11—C12—C13−0.9 (5)C7—N1—Zn1—O489.38 (15)
C11—C12—C13—C14−0.2 (5)C9—N1—Zn1—O1−166.21 (19)
C12—C13—C14—C151.2 (5)C7—N1—Zn1—O18.29 (13)
C13—C14—C15—O3−179.8 (3)C8—O1—Zn1—O5120.12 (16)
C13—C14—C15—C10−1.1 (4)C8—O1—Zn1—O4−121.10 (16)
C11—C10—C15—O3178.6 (2)C8—O1—Zn1—N1−0.59 (15)
C9—C10—C15—O3−1.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H23···O60.851.902.725 (3)164
O4—H24···O2i0.851.882.695 (3)160
O5—H21···O2ii0.851.812.629 (2)161
O5—H22···O6iii0.851.932.742 (3)159

Symmetry codes: (i) −x+2, −y+1, −z; (ii) x−1, y, z; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2591).

References

  • Audriceth, L. F., Scott, E. S. & Kipper, P. S. (1954). J. Org. Chem.19, 733–741.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • You, J., Liu, B., Chen, Y.-Q., Xiao, C. & Zhai, D.-Q. (2008). Acta Cryst. E64, m1338. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography