PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1702–o1703.
Published online 2009 June 27. doi:  10.1107/S160053680902385X
PMCID: PMC2969242

Ethyl 1-oxo-1,2,3,4-tetra­hydro-9H-carbazole-3-carboxyl­ate

Abstract

The title compound, C15H15NO3, contains a carbazole skeleton with an ethoxy­carbonyl group at the 3 position. In the indole ring system, the benzene and pyrrole rings are nearly coplanar, forming a dihedral angle of 1.95 (8)°. The cyclo­hexenone ring has an envelope conformation. In the crystal structure, pairs of strong N—H(...)O hydrogen bonds link the mol­ecules into centrosymmetric dimers with R 2 2(10) ring motifs. π–π contacts between parallel pyrrole rings [centroid–centroid distance = 3.776 (2) Å] may further stabilize the structure. A weak C—H(...)π inter­action is also observed.

Related literature

For tetrahydrocarbazole derivatives as synthetic precursors of cyclic indole-type alkaloids of biological interest, see: Abraham (1975 [triangle]); Phillipson & Zenk (1980 [triangle]); Saxton (1983 [triangle]). The title compound is used in the synthesis of a precursor for the synthesis of the anti-tumor drug ellipticine (Ergün et al., 2004 [triangle]). Murraya L. (Rutaceae) is a genus of shrubs or small trees from Southern Asia (Chang, 1977 [triangle]) from which carbazole alkaloids have been isolated (Chakraborty & Roy, 1991 [triangle]). For the biological activity of carbazole alkaloids, see: Kondo et al. (1986 [triangle]); Te Paske et al. (1989a [triangle],b [triangle]). For related structures, see: Çaylak et al. (2007 [triangle]); Uludağ et al. (2009 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For ring-motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1702-scheme1.jpg

Experimental

Crystal data

  • C15H15NO3
  • M r = 257.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1702-efi1.jpg
  • a = 5.6811 (3) Å
  • b = 8.7378 (5) Å
  • c = 24.8310 (14) Å
  • β = 93.208 (4)°
  • V = 1230.69 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100 K
  • 0.45 × 0.20 × 0.15 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.958, T max = 0.983
  • 9148 measured reflections
  • 3004 independent reflections
  • 2145 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.075
  • wR(F 2) = 0.221
  • S = 1.05
  • 3004 reflections
  • 177 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.25 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902385X/xu2543sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902385X/xu2543Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

supplementary crystallographic information

Comment

Tetrahydrocarbazole derivatives can be considered to be synthetic precursors of cyclic indole-type alkaloids of biological interest (Abraham, 1975; Phillipson & Zenk, 1980; Saxton, 1983). The title compound was used in the synthesis of the precursor compound for the synthesis of anti-tumor drug ellipticine (Ergün et al., 2004). Murraya L. (Rutaceae) is a genus of shrubs or small trees from Southern Asia (Chang, 1977). The main constituent of this genus include carbazole alkaloids (Chakraborty & Roy, 1991). Several biological properties have been reported for carbazole alkaloids including antibiotic, cytotoxic and antiviral activities (Kondo et al., 1986; Te Paske et al., 1989a,b). The title compound may also be used as a precursor in the synthesis of Murraya alkaloids. The present study was undertaken to ascertain its crystal structure.

The molecule of the title compound (Fig. 1) contains a carbazole skeleton with a carboxyethyl group at position 3, where the bond lengths (Allen et al., 1987) and angles are within normal ranges.

An examination of the deviations from the least-squares planes through individual rings shows that rings B (C4a/C5a/C8a/N9/C9a) and C (C5a/C5—C8/C8a) are nearly coplanar [with a maximum deviation of -0.028 (3) Å for atom C4a] with dihedral angle of A/B = 1.95 (8)°. Ring A (C1—C4/C4a/C9a) adopts envelope conformation with atom C3 displaced by 0.527 (3) Å from the plane of the other rings atoms, as in 3a,4,10,10b-tetrahydro-2H-furo[2,3-a]carbazol-5(3H)-one (Çaylak et al., 2007) and 3,3-ethylenedithio-3,3a,4,5,10,10b-hexahydro-2H-furo[2,3-a]carbazole (Uludağ et al., 2009).

In the crystal structure, pairs of strong intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into centosymmetric dimers with R22(10) ring motifs (Bernstein et al., 1995) (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contact between the pyrrole rings, Cg2—Cg2i, [symmetry code:(i) -x, 1 - y, -z, where Cg2 is centroid of the ring B (C4a/C5a/C8a/N9/C9a)] may further stabilize the structure, with centroid-centroid distance of 3.776 (2) Å. There also exists a weak C—H···π interaction (Table 1).

Experimental

For the preparation of the title compound, a solution of ethyl 1,2,3,4-tetrahydro-9H-carbazole-3-carboxylate (5.00 g, 20.5 mmol) in methanol (25 ml) was added dropwise to a solution of periodic acid (9.35 g, 41.0 mmol) in methanol-water (1:1, 100 ml) at 273 K. The reaction mixture was stirred for 1 h at 273 K, then stirring was continued for a further 1 h at room temperature. The solvent was evaporated, then the residue was dissolved in chloroform and washed first with sodium carbonate (10%, 50 ml) and then with sodium bisulfite (10%, 50 ml). The organic layer was dried over anhydrous magnesium sulfate and the solvent was evaporated. The residue was chromatographed on silica gel using ethyl acetate and crystallized from methanol (yield; 3.17 g, 67%, m.p. 411 K).

Refinement

The highest peak in the final difference electron-density map is apart 0.94 Å from atom C3. Atom H9 (for NH) was located in difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically, with C—H = 0.95, 1.00, 0.99 and 0.98 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A partial packing diagram for the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C15H15NO3F(000) = 544
Mr = 257.28Dx = 1.389 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3480 reflections
a = 5.6811 (3) Åθ = 1.6–28.3°
b = 8.7378 (5) ŵ = 0.10 mm1
c = 24.8310 (14) ÅT = 100 K
β = 93.208 (4)°Rod-shaped, colorless
V = 1230.69 (12) Å30.45 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer3004 independent reflections
Radiation source: fine-focus sealed tube2145 reflections with I > 2σ(I)
graphiteRint = 0.059
[var phi] and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −7→7
Tmin = 0.958, Tmax = 0.983k = −11→9
9148 measured reflectionsl = −32→28

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.1083P)2 + 1.2571P] where P = (Fo2 + 2Fc2)/3
3004 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 1.25 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.4546 (3)0.0609 (2)0.42291 (7)0.0294 (5)
O2−0.0619 (5)0.3051 (4)0.27554 (9)0.0775 (11)
O3−0.2959 (5)0.4520 (3)0.32045 (8)0.0603 (8)
C10.2768 (4)0.1407 (3)0.42209 (10)0.0245 (5)
C20.1783 (5)0.2133 (4)0.37051 (10)0.0316 (6)
H2A0.19880.14060.34050.038*
H2B0.27270.30560.36340.038*
C3−0.0831 (5)0.2597 (4)0.36991 (11)0.0355 (7)
H3−0.17580.16230.36890.043*
C4−0.1525 (4)0.3454 (3)0.41897 (10)0.0263 (6)
H4A−0.09780.45270.41710.032*
H4B−0.32640.34610.42020.032*
C4A−0.0453 (4)0.2708 (3)0.46893 (10)0.0229 (5)
C5−0.2963 (4)0.3489 (3)0.54916 (10)0.0270 (6)
H5−0.41520.40410.52890.032*
C5A−0.1107 (4)0.2805 (3)0.52332 (9)0.0232 (5)
C6−0.3046 (5)0.3353 (3)0.60418 (11)0.0313 (6)
H6−0.43150.38020.62190.038*
C7−0.1266 (5)0.2553 (3)0.63473 (10)0.0314 (6)
H7−0.13340.25020.67280.038*
C80.0550 (5)0.1850 (3)0.61069 (10)0.0283 (6)
H80.17370.13130.63150.034*
C8A0.0608 (4)0.1948 (3)0.55452 (10)0.0243 (5)
N90.2174 (4)0.1343 (3)0.52100 (8)0.0240 (5)
H90.335 (7)0.082 (4)0.5280 (15)0.050 (11)*
C9A0.1539 (4)0.1807 (3)0.46917 (9)0.0233 (5)
C10−0.1422 (5)0.3404 (4)0.31657 (11)0.0343 (7)
C11−0.3501 (8)0.5424 (4)0.27171 (14)0.0588 (11)
H11A−0.39260.64780.28210.071*
H11B−0.20820.54830.25040.071*
C12−0.5423 (7)0.4765 (6)0.23878 (18)0.0713 (13)
H12A−0.57700.54160.20720.107*
H12B−0.68250.46930.25990.107*
H12C−0.49760.37410.22690.107*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0278 (9)0.0346 (11)0.0253 (9)0.0038 (8)−0.0018 (7)0.0018 (8)
O20.0752 (18)0.139 (3)0.0185 (10)0.0649 (19)0.0037 (11)0.0088 (13)
O30.103 (2)0.0541 (16)0.0224 (10)0.0415 (15)−0.0067 (11)0.0049 (10)
C10.0240 (11)0.0279 (14)0.0213 (11)−0.0035 (10)−0.0028 (9)0.0015 (10)
C20.0282 (13)0.0451 (18)0.0215 (12)0.0037 (12)0.0013 (10)0.0077 (11)
C30.0433 (16)0.0393 (18)0.0234 (13)0.0103 (13)−0.0034 (11)−0.0001 (11)
C40.0259 (12)0.0319 (15)0.0211 (11)0.0004 (11)0.0000 (9)0.0074 (10)
C4A0.0244 (11)0.0230 (13)0.0209 (11)−0.0034 (10)−0.0032 (9)0.0035 (9)
C50.0274 (12)0.0279 (14)0.0254 (12)−0.0009 (10)−0.0016 (9)0.0029 (10)
C5A0.0267 (12)0.0223 (13)0.0200 (11)−0.0048 (10)−0.0037 (9)0.0025 (9)
C60.0334 (13)0.0349 (16)0.0259 (13)0.0017 (12)0.0033 (10)−0.0001 (11)
C70.0415 (15)0.0333 (16)0.0193 (11)−0.0027 (12)−0.0009 (10)0.0013 (11)
C80.0353 (13)0.0285 (15)0.0203 (12)−0.0019 (11)−0.0062 (10)0.0020 (10)
C8A0.0268 (12)0.0240 (13)0.0213 (11)−0.0033 (10)−0.0040 (9)0.0007 (10)
N90.0278 (11)0.0250 (12)0.0186 (10)0.0007 (9)−0.0043 (8)0.0003 (8)
C9A0.0274 (12)0.0237 (13)0.0183 (11)−0.0049 (10)−0.0035 (9)0.0024 (9)
C100.0376 (14)0.0441 (18)0.0207 (12)0.0060 (13)−0.0035 (10)0.0014 (11)
C110.101 (3)0.040 (2)0.0337 (17)0.013 (2)−0.0184 (18)0.0118 (14)
C120.053 (2)0.083 (3)0.076 (3)−0.005 (2)−0.022 (2)0.041 (2)

Geometric parameters (Å, °)

O1—C11.227 (3)C6—C51.375 (4)
O2—C101.180 (3)C6—H60.9500
O3—C101.315 (4)C7—C61.415 (4)
O3—C111.464 (4)C7—C81.366 (4)
C1—C9A1.438 (3)C7—H70.9500
C2—C11.508 (3)C8—C8A1.400 (3)
C2—H2A0.9900C8—H80.9500
C2—H2B0.9900C8A—N91.359 (3)
C3—C21.539 (4)C8A—C5A1.423 (3)
C3—C41.501 (4)N9—H90.82 (4)
C3—C101.521 (4)C9A—C4A1.378 (4)
C3—H31.0000C9A—N91.378 (3)
C4—C4A1.500 (3)C11—C121.446 (6)
C4—H4A0.9900C11—H11A0.9900
C4—H4B0.9900C11—H11B0.9900
C5—C5A1.399 (4)C12—H12A0.9800
C5—H50.9500C12—H12B0.9800
C5A—C4A1.423 (3)C12—H12C0.9800
C10—O3—C11116.7 (3)C5—C6—H6119.6
O1—C1—C2121.3 (2)C7—C6—H6119.6
O1—C1—C9A124.2 (2)C6—C7—H7119.3
C9A—C1—C2114.5 (2)C8—C7—C6121.5 (2)
C1—C2—C3115.5 (2)C8—C7—H7119.3
C1—C2—H2A108.4C7—C8—C8A118.0 (2)
C1—C2—H2B108.4C7—C8—H8121.0
C3—C2—H2A108.4C8A—C8—H8121.0
C3—C2—H2B108.4N9—C8A—C5A108.9 (2)
H2A—C2—H2B107.5N9—C8A—C8129.8 (2)
C2—C3—H3106.4C8—C8A—C5A121.4 (2)
C4—C3—C2114.9 (2)C8A—N9—C9A108.1 (2)
C4—C3—C10114.8 (2)C8A—N9—H9130 (3)
C4—C3—H3106.4C9A—N9—H9122 (3)
C10—C3—C2107.3 (2)N9—C9A—C1125.0 (2)
C10—C3—H3106.4C4A—C9A—N9110.1 (2)
C3—C4—H4A109.7C4A—C9A—C1124.8 (2)
C3—C4—H4B109.7O2—C10—O3123.2 (3)
C4A—C4—C3110.0 (2)O2—C10—C3123.6 (3)
C4A—C4—H4A109.7O3—C10—C3113.3 (2)
C4A—C4—H4B109.7O3—C11—H11A109.3
H4A—C4—H4B108.2O3—C11—H11B109.3
C5A—C4A—C4130.1 (2)C12—C11—O3111.7 (3)
C9A—C4A—C4123.2 (2)C12—C11—H11A109.3
C9A—C4A—C5A106.7 (2)C12—C11—H11B109.3
C5A—C5—H5120.4H11A—C11—H11B107.9
C6—C5—C5A119.2 (2)C11—C12—H12A109.5
C6—C5—H5120.4C11—C12—H12B109.5
C4A—C5A—C8A106.1 (2)C11—C12—H12C109.5
C5—C5A—C4A134.8 (2)H12A—C12—H12B109.5
C5—C5A—C8A119.1 (2)H12A—C12—H12C109.5
C5—C6—C7120.8 (3)H12B—C12—H12C109.5
C11—O3—C10—O2−5.3 (5)C5—C5A—C4A—C45.2 (5)
C11—O3—C10—C3175.9 (3)C5—C5A—C4A—C9A−177.5 (3)
C10—O3—C11—C1288.6 (5)C8A—C5A—C4A—C4−176.3 (3)
O1—C1—C9A—N9−0.6 (4)C8A—C5A—C4A—C9A1.0 (3)
O1—C1—C9A—C4A179.6 (2)C7—C6—C5—C5A0.9 (4)
C2—C1—C9A—N9−176.9 (2)C8—C7—C6—C5−2.0 (4)
C2—C1—C9A—C4A3.2 (4)C6—C7—C8—C8A0.2 (4)
C3—C2—C1—O1158.9 (3)C7—C8—C8A—N9−178.9 (3)
C3—C2—C1—C9A−24.5 (4)C7—C8—C8A—C5A2.7 (4)
C4—C3—C2—C146.9 (4)N9—C8A—C5A—C4A−1.2 (3)
C10—C3—C2—C1175.9 (2)N9—C8A—C5A—C5177.5 (2)
C2—C3—C4—C4A−44.0 (3)C8—C8A—C5A—C4A177.5 (2)
C10—C3—C4—C4A−169.1 (2)C8—C8A—C5A—C5−3.7 (4)
C2—C3—C10—O236.0 (5)C8—C8A—N9—C9A−177.6 (3)
C2—C3—C10—O3−145.3 (3)C5A—C8A—N9—C9A1.0 (3)
C4—C3—C10—O2165.0 (3)C1—C9A—N9—C8A179.8 (2)
C4—C3—C10—O3−16.3 (4)C4A—C9A—N9—C8A−0.4 (3)
C3—C4—C4A—C5A−159.6 (3)N9—C9A—C4A—C4177.1 (2)
C3—C4—C4A—C9A23.5 (4)N9—C9A—C4A—C5A−0.4 (3)
C6—C5—C5A—C4A−179.8 (3)C1—C9A—C4A—C4−3.1 (4)
C6—C5—C5A—C8A1.8 (4)C1—C9A—C4A—C5A179.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N9—H9···O1i0.82 (4)2.08 (4)2.834 (3)154 (4)
C4—H4A···Cg3ii0.992.753.727 (3)171

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2543).

References

  • Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Fransworth, chs. 7 and 8. New York: Marcel Decker.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Çaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913–o3914.
  • Chakraborty, D. P. & Roy, S. (1991). Progress in the Chemistry of Organic Natural Products, edited by W. Herz, G. W. Kirby, W. Steglich & Ch. Tamm, Vol. 57, pp. 71–152. Wien, New York: Springer-Verlag.
  • Chang, C. E. (1977). Flora of Taiwan, Vol. 3, pp. 520–523. Tapei, Taiwan: Poch Publishing Co. Ltd.
  • Ergün, Y., Patir, S. & Okay, G. (2004). Synth. Commun 34, 435–442.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kondo, S., Katayama, M. & Marumo, S. (1986). J. Antibiot.39, 727–730. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.
  • Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Te Paske, M. R., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. (1989a). J. Org. Chem.54, 4743–4746.
  • Te Paske, M. R., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. (1989b). Tetrahedron Lett.30, 5965–5968.
  • Uludağ, N., Öztürk, A., Hökelek, T. & Erdoğan, Ü. I. (2009). Acta Cryst. E65, o595–o596. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography