PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1477.
Published online 2009 June 6. doi:  10.1107/S1600536809020224
PMCID: PMC2969241

(Z)-1-[(3-Cyano­phen­yl)iminiometh­yl]-2-naphtholate

Abstract

The title compound, C18H12N2O, crystallizes in a zwitterionic form. The dihedral angle between the planes of the benzene ring and naphthalene ring system is 13.95 (5)°. An intra­molecular N—H(...)O inter­action results in the formation of a planar six-membered ring, which is oriented at dihedral angles of 13.50 (4) and 4.49 (4)° with respect to the benzene ring and naphthalene ring system, respectively. In the crystal structure, inter­molecular C—H(...)O and C—H(...)N inter­actions link the mol­ecules into a two-dimensional network. π–π contacts between the naphthalene systems [centroid–centroid distance = 3.974 (1) Å] may further stabilize the structure.

Related literature

For the pharmacological activity of Schiff base compounds, see: Dao et al. (2000 [triangle]); Sriram et al. (2006 [triangle]). For the role played by Schiff base compounds in coordination chemistry related to magnetism, see: Chen et al. (2008 [triangle]); Weber et al. (2007 [triangle]). For related structures, see: Elmali et al. (2001 [triangle]); Yüce et al. (2006 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1477-scheme1.jpg

Experimental

Crystal data

  • C18H12N2O
  • M r = 272.30
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1477-efi1.jpg
  • a = 7.8943 (16) Å
  • b = 9.1356 (18) Å
  • c = 9.4933 (19) Å
  • α = 83.97 (3)°
  • β = 84.41 (3)°
  • γ = 82.50 (3)°
  • V = 672.6 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 294 K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.976, T max = 0.983
  • 6177 measured reflections
  • 2628 independent reflections
  • 1146 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.195
  • S = 0.94
  • 2628 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809020224/hk2700sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020224/hk2700Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff base compounds have received considerable attention for many years, primarily due to various pharmacological activities, such as anticancer (Dao et al., 2000) and anti-HIV (Sriram et al., 2006) activities. In addition, Schiff base compounds play important roles in coordination chemistry related to magnetism (Weber et al., 2007) and catalysis (Chen et al., 2008). Generally, Schiff base compounds exhibit the phenol-imine and keto-amine forms. Another form of the Schiff base compounds is their zwitterionic form, and this form have been reported in the literature (Elmali, et al., 2001). We report herein the crystal structure of the title compound.

The molecule of the title compound (Fig 1) is in a zwitterionic form. The bond lengths (Allen et al., 1987) and angles are within normal ranges, and C8=N1 [1.304 (4) Å] and C10-O1 [1.287 (4) Å] bonds may be compared with the corresponding values [1.2954 (19) and 1.2946 (17) Å] in a similar zwitterionic structure (Yüce et al., 2006). Phenyl and naphthalyl rings, A (C1-C6) and B (C9-C18), are, of course, planar and the dihedral angle between them is 13.95 (5)°. Intramolecular N-H···O interaction (Table 1) results in the formation of a planar six-membered ring C (O1/N1/C8-C10/H1A), which is oriented with respect to rings A and B at dihedral angles of 13.50 (4) and 4.49 (4) °, respectively.

In the crystal structure, intramolecular N-H···O and intermolecular C-H···O and C-H···N interactions (Table 1) link the molecules into a two-dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contact between the naphthalyl rings, Cg2—Cg2i [symmetry code: (i) -x, 1 - y, 1 - z, where Cg2 is centroid of the ring (C9-C13/C18)] may further stabilize the structure, with centroid-centroid distance of 3.974 (1) Å.

Experimental

For the preparation of the title compound, 3-aminobenzonitrile (0.59 g, 5 mmol) and 2-hydroxynaphthalene-1-carbaldehyde (0.861 g, 5 mmol) were dissolved in ethanol (25 ml). The resulting mixture was heated to reflux for 6 h, and then cooled to room temperature. The solid product was collected by filtration. Crystals suitable for X-ray analysis were obtained on slow evaporation at room temperature.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C18H12N2OZ = 2
Mr = 272.30F(000) = 284
Triclinic, P1Dx = 1.345 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8943 (16) ÅCell parameters from 4320 reflections
b = 9.1356 (18) Åθ = 3.2–27.5°
c = 9.4933 (19) ŵ = 0.09 mm1
α = 83.97 (3)°T = 294 K
β = 84.41 (3)°Prism, yellow
γ = 82.50 (3)°0.20 × 0.20 × 0.20 mm
V = 672.6 (2) Å3

Data collection

Rigaku SCXmini diffractometer2628 independent reflections
Radiation source: fine-focus sealed tube1146 reflections with I > 2σ(I)
graphiteRint = 0.061
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = −9→9
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −11→11
Tmin = 0.976, Tmax = 0.983l = −11→11
6177 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H-atom parameters constrained
S = 0.94w = 1/[σ2(Fo2) + (0.0919P)2] where P = (Fo2 + 2Fc2)/3
2628 reflections(Δ/σ)max = 0.016
190 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.9002 (3)0.6505 (3)0.2062 (2)0.0608 (8)
N10.7833 (3)0.3998 (3)0.2569 (3)0.0439 (7)
H1A0.82700.46520.19740.053*
N20.4237 (5)−0.1364 (4)0.3557 (4)0.0852 (12)
C10.7515 (4)0.2689 (4)0.2031 (3)0.0421 (8)
C20.6494 (4)0.1697 (3)0.2774 (3)0.0452 (9)
H2A0.59840.18760.36750.054*
C30.6234 (4)0.0444 (4)0.2177 (4)0.0482 (9)
C40.6973 (5)0.0157 (4)0.0832 (4)0.0609 (11)
H4A0.6799−0.06950.04370.073*
C50.7971 (5)0.1160 (4)0.0093 (4)0.0654 (11)
H5A0.84670.0985−0.08120.079*
C60.8240 (4)0.2410 (4)0.0675 (3)0.0514 (10)
H6A0.89140.30770.01600.062*
C70.5115 (5)−0.0569 (4)0.2954 (4)0.0611 (11)
C80.7525 (4)0.4310 (3)0.3886 (3)0.0408 (8)
H8A0.70160.36300.45360.049*
C90.7916 (4)0.5615 (3)0.4381 (3)0.0405 (8)
C100.8725 (4)0.6662 (3)0.3400 (4)0.0433 (9)
C110.9241 (5)0.7903 (4)0.3945 (4)0.0576 (11)
H11A0.97890.85820.33230.069*
C120.8969 (5)0.8139 (4)0.5334 (4)0.0577 (10)
H12A0.93340.89680.56450.069*
C130.8122 (4)0.7125 (3)0.6335 (4)0.0424 (9)
C140.7876 (4)0.7374 (4)0.7790 (4)0.0533 (10)
H14A0.82610.81990.80910.064*
C150.7077 (4)0.6415 (4)0.8761 (4)0.0554 (10)
H15A0.69080.65900.97150.067*
C160.6524 (4)0.5185 (4)0.8304 (4)0.0509 (9)
H16A0.59810.45290.89570.061*
C170.6766 (4)0.4920 (4)0.6902 (3)0.0483 (9)
H17A0.63740.40870.66230.058*
C180.7585 (4)0.5863 (3)0.5875 (3)0.0367 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.083 (2)0.0657 (17)0.0347 (15)−0.0255 (14)0.0047 (13)0.0010 (12)
N10.0520 (19)0.0430 (17)0.0370 (17)−0.0146 (13)0.0051 (13)−0.0025 (14)
N20.120 (3)0.064 (2)0.076 (3)−0.043 (2)0.011 (2)−0.010 (2)
C10.043 (2)0.044 (2)0.040 (2)−0.0072 (16)−0.0024 (16)−0.0059 (17)
C20.057 (2)0.044 (2)0.035 (2)−0.0102 (18)0.0011 (16)−0.0075 (16)
C30.057 (2)0.042 (2)0.048 (2)−0.0068 (18)−0.0062 (18)−0.0107 (17)
C40.079 (3)0.055 (2)0.051 (3)−0.008 (2)−0.004 (2)−0.018 (2)
C50.083 (3)0.069 (3)0.047 (2)−0.018 (2)0.010 (2)−0.020 (2)
C60.053 (2)0.061 (2)0.040 (2)−0.0129 (19)0.0046 (17)−0.0033 (18)
C70.080 (3)0.051 (2)0.054 (3)−0.014 (2)−0.001 (2)−0.011 (2)
C80.040 (2)0.044 (2)0.038 (2)−0.0066 (16)0.0015 (15)−0.0029 (16)
C90.039 (2)0.041 (2)0.041 (2)−0.0065 (16)−0.0007 (15)0.0003 (16)
C100.052 (2)0.0366 (19)0.042 (2)−0.0093 (16)−0.0054 (17)−0.0010 (16)
C110.070 (3)0.047 (2)0.058 (3)−0.0253 (19)−0.001 (2)0.003 (2)
C120.068 (3)0.050 (2)0.060 (3)−0.022 (2)−0.003 (2)−0.007 (2)
C130.041 (2)0.042 (2)0.046 (2)−0.0029 (16)−0.0066 (16)−0.0074 (17)
C140.053 (2)0.055 (2)0.056 (3)−0.0066 (19)−0.0103 (19)−0.020 (2)
C150.058 (2)0.064 (3)0.043 (2)−0.003 (2)0.0004 (18)−0.009 (2)
C160.057 (2)0.051 (2)0.043 (2)−0.0085 (18)0.0046 (17)−0.0013 (18)
C170.052 (2)0.045 (2)0.048 (2)−0.0097 (18)0.0029 (17)−0.0074 (18)
C180.0366 (19)0.0372 (19)0.0377 (19)−0.0076 (15)−0.0012 (14)−0.0074 (15)

Geometric parameters (Å, °)

O1—C101.287 (4)C9—C101.431 (4)
N1—C11.409 (4)C9—C181.453 (4)
N1—C81.304 (4)C11—C101.416 (4)
N1—H1A0.8600C11—C121.350 (5)
N2—C71.142 (4)C11—H11A0.9300
C2—C11.384 (4)C12—H12A0.9300
C2—C31.376 (4)C13—C121.435 (4)
C2—H2A0.9300C13—C141.414 (4)
C4—C31.387 (5)C13—C181.403 (4)
C4—C51.377 (5)C14—H14A0.9300
C4—H4A0.9300C15—C141.370 (4)
C5—H5A0.9300C15—C161.382 (5)
C6—C11.392 (4)C15—H15A0.9300
C6—C51.369 (5)C16—H16A0.9300
C6—H6A0.9300C17—C161.369 (4)
C7—C31.458 (5)C17—C181.399 (4)
C8—H8A0.9300C17—H17A0.9300
C9—C81.406 (4)
C1—N1—H1A117.0O1—C10—C9122.5 (3)
C8—N1—C1126.0 (3)O1—C10—C11119.7 (3)
C8—N1—H1A117.0C11—C10—C9117.8 (3)
C2—C1—N1123.1 (3)C10—C11—H11A118.7
C2—C1—C6119.0 (3)C12—C11—C10122.6 (3)
C6—C1—N1117.9 (3)C12—C11—H11A118.7
C1—C2—H2A120.1C11—C12—C13120.8 (3)
C3—C2—C1119.8 (3)C11—C12—H12A119.6
C3—C2—H2A120.1C13—C12—H12A119.6
C2—C3—C4121.1 (3)C14—C13—C12120.0 (3)
C2—C3—C7119.2 (3)C18—C13—C12119.9 (3)
C4—C3—C7119.6 (3)C18—C13—C14120.0 (3)
C3—C4—H4A120.7C13—C14—H14A119.6
C5—C4—C3118.6 (4)C15—C14—C13120.8 (3)
C5—C4—H4A120.7C15—C14—H14A119.6
C4—C5—H5A119.6C14—C15—C16119.1 (3)
C6—C5—C4120.9 (4)C14—C15—H15A120.5
C6—C5—H5A119.6C16—C15—H15A120.5
C1—C6—H6A119.7C15—C16—H16A119.6
C5—C6—C1120.5 (3)C17—C16—C15120.8 (3)
C5—C6—H6A119.7C17—C16—H16A119.6
N2—C7—C3179.7 (4)C16—C17—C18122.1 (3)
N1—C8—C9123.9 (3)C16—C17—H17A119.0
N1—C8—H8A118.0C18—C17—H17A119.0
C9—C8—H8A118.0C13—C18—C9118.5 (3)
C8—C9—C10118.8 (3)C17—C18—C13117.1 (3)
C8—C9—C18120.7 (3)C17—C18—C9124.4 (3)
C10—C9—C18120.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.872.562 (3)136
C2—H2A···N2i0.932.613.463 (3)152
C6—H6A···O1ii0.932.573.376 (3)145
C17—H17A···N2i0.932.623.522 (3)163

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2700).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc.130, 2170–2171. [PubMed]
  • Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem.35, 805–813. [PubMed]
  • Elmali, A., Elerman, Y. & Svoboda, I. (2001). Acta Cryst. C57, 485–486. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett.16, 2127–2129. [PubMed]
  • Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem.633, 1159–1162.
  • Yüce, S., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, o389–o393. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography