PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1501.
Published online 2009 June 6. doi:  10.1107/S1600536809019953
PMCID: PMC2969236

1-(2-Chloro­phen­yl)-2-(isopropyl­amino)ethanol

Abstract

In the title compound, C11H16ClNO, the side chain of the ethyl­amine group is almost perpendicular to the benzene ring; the dihedral angle between the C/C/N plane of the ethyl­amine grouping and the benzene plane is 87.4 (2)°. An intramolecular N—H(...)O hydrogen bond occurs. In the crystal structure, mol­ecules are connected weakly by O—H(...)N hydrogen bonds, forming a tetra­mer around the An external file that holds a picture, illustration, etc.
Object name is e-65-o1501-efi1.jpg symmetry axis. The tetra­mers are linked weakly by a C—H(...)O hydrogen bond.

Related literature

For a related structure, see: Koorts & Caira (1985 [triangle]). For the synthesis of the title compound, see; Koshinaka et al. (1978 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1501-scheme1.jpg

Experimental

Crystal data

  • C11H16ClNO
  • M r = 213.70
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-65-o1501-efi2.jpg
  • a = 14.0195 (5) Å
  • c = 12.1243 (4) Å
  • V = 2382.99 (14) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 296 K
  • 0.41 × 0.38 × 0.22 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.871, T max = 0.939
  • 22063 measured reflections
  • 2711 independent reflections
  • 1796 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.098
  • S = 1.00
  • 2711 reflections
  • 131 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.33 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1181 Friedel pairs
  • Flack parameter: 0.001 (1)

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019953/is2416sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019953/is2416Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound (clorprenaline) is one of a series of structurally related β-adrenoceptorblocking drugs. Synthesis results have been reported in the literature (Koshinaka et al., 1978). Clorprenaline was prepared by clorprenaline hydrochloride.

In the title compound (Fig. 1), there are no unusual bond distances or angles. The Cl atom and the phenyl plane is almost planar with the deviation of 0.0026 Å. The dihedral angle between the plane formed by C1 C2 C8 and the phenyl plane is 87.5°, which shows that the two planes are almost perpendicular. The C9—N1 distance of 1.473 (4) Å is shorter than the value of the similar bond distance of 1.502 Å (Koorts & Caira, 1985). The crystal structure indicates a possible intermolecular O—H···N interaction that might help to establish the crystal packing (Fig. 2).

Experimental

Racemic clorprenaline hydrochloride (10 g, 0.047 mol), which was purchased from Hangzhou Chempro Tech Co., Inc. Hang Zhou, China, was dissolved in ethanol (100 ml) and NaOH (1.9 g, 0.047 mol) was dissolved in water (100 ml). The two solutions were mixed and the mixture was cooled for 3 h. The precipitate formed was filtered off, washed with water and dried. The crude product obtained was recrystallized from ethanol. Single crystals suitable for X-ray analysis were grown by slow evaporation at room temperature.

Refinement

H atoms were placed in calculated positions and allowed to ride on their parent atoms with C—H = 0.93 (aromatic), 0.98 (methine), 0.97 (methylene), 0.96 (methyl), O—H = 0.82 and N—H = 0.858 Å, with Uiso(H) = 1.2 or 1.5 times Ueq of the parent atoms.

Figures

Fig. 1.
The molecular structure with atom labels, showing 40% probability displacement ellipsoids.
Fig. 2.
A packing diagram, viewed down along the c axis.

Crystal data

C11H16ClNODx = 1.191 Mg m3
Mr = 213.70Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 13301 reflections
Hall symbol: P -4 2nθ = 3.3–27.4°
a = 14.0195 (5) ŵ = 0.29 mm1
c = 12.1243 (4) ÅT = 296 K
V = 2382.99 (14) Å3Block, colorless
Z = 80.41 × 0.38 × 0.22 mm
F(000) = 912

Data collection

Rigaku R-AXIS RAPID diffractometer2711 independent reflections
Radiation source: RT1796 reflections with I > 2σ(I)
graphiteRint = 0.044
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.3°
ω scansh = −18→17
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −18→18
Tmin = 0.871, Tmax = 0.939l = −13→15
22063 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043w = 1/[σ2(Fo2) + (0.002P)2 + 1.96P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.19 e Å3
2711 reflectionsΔρmin = −0.33 e Å3
131 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0308 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1181 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.001 (1)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.89802 (8)0.90968 (7)0.76779 (8)0.0866 (3)
O10.82940 (16)1.14673 (15)0.54268 (18)0.0616 (6)
H2010.88011.17270.55810.074*
C20.81036 (19)1.07851 (19)0.7258 (2)0.0484 (6)
C10.8209 (2)1.06095 (19)0.6030 (2)0.0492 (7)
H10.87691.02080.58960.059*
N10.74199 (17)0.99152 (18)0.4402 (2)0.0527 (6)
H3010.76791.04390.41920.063*
C40.8307 (3)1.0339 (3)0.9173 (3)0.0717 (10)
H40.85320.99100.96970.086*
C30.8417 (2)1.0153 (2)0.8060 (2)0.0557 (7)
C80.7325 (2)1.0115 (2)0.5591 (2)0.0538 (7)
H8A0.72270.95210.59870.065*
H8B0.67721.05170.57140.065*
C90.6502 (2)0.9762 (2)0.3839 (3)0.0658 (9)
H90.60621.02720.40540.079*
C70.7657 (2)1.1617 (2)0.7621 (3)0.0649 (8)
H70.74361.20540.71040.078*
C110.6655 (3)0.9809 (3)0.2604 (3)0.0907 (12)
H11A0.70940.93190.23850.109*
H11B0.69111.04220.24110.109*
H11C0.60570.97170.22330.109*
C60.7534 (2)1.1809 (3)0.8735 (3)0.0753 (10)
H60.72331.23670.89590.090*
C100.6073 (3)0.8813 (3)0.4176 (3)0.0885 (12)
H10A0.59650.88100.49580.106*
H10B0.65050.83070.39860.106*
H10C0.54790.87210.37980.106*
C50.7860 (3)1.1172 (3)0.9497 (3)0.0779 (11)
H50.77811.13001.02440.093*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1254 (9)0.0656 (5)0.0688 (5)0.0248 (5)−0.0095 (6)0.0035 (5)
O10.0652 (14)0.0607 (13)0.0588 (12)−0.0115 (10)−0.0115 (11)0.0144 (10)
C20.0470 (14)0.0513 (15)0.0470 (14)−0.0033 (12)0.0018 (13)−0.0009 (13)
C10.0505 (16)0.0506 (16)0.0466 (15)0.0013 (13)−0.0003 (13)0.0046 (12)
N10.0532 (14)0.0547 (14)0.0501 (13)−0.0047 (12)−0.0052 (11)−0.0027 (12)
C40.086 (3)0.082 (3)0.0473 (18)−0.006 (2)−0.0079 (17)−0.0014 (16)
C30.0620 (18)0.0542 (17)0.0509 (16)−0.0040 (15)−0.0033 (14)0.0002 (13)
C80.0536 (17)0.0556 (17)0.0522 (16)−0.0052 (14)0.0036 (14)−0.0057 (14)
C90.0605 (19)0.062 (2)0.075 (2)0.0040 (16)−0.0155 (17)−0.0085 (16)
C70.0632 (19)0.0651 (19)0.066 (2)0.0135 (15)0.0028 (17)−0.0066 (17)
C110.106 (3)0.092 (3)0.074 (2)0.004 (2)−0.032 (2)−0.007 (2)
C60.065 (2)0.086 (3)0.075 (2)0.0079 (19)0.0035 (19)−0.025 (2)
C100.070 (2)0.085 (3)0.110 (3)−0.021 (2)−0.011 (2)−0.007 (2)
C50.075 (2)0.104 (3)0.0548 (19)−0.012 (2)0.0057 (18)−0.025 (2)

Geometric parameters (Å, °)

Cl1—C31.741 (3)C8—H8B0.9700
O1—C11.413 (3)C9—C101.516 (5)
O1—H2010.8200C9—C111.514 (5)
C2—C31.387 (4)C9—H90.9800
C2—C71.395 (4)C7—C61.387 (5)
C2—C11.516 (4)C7—H70.9300
C1—C81.517 (4)C11—H11A0.9600
C1—H10.9800C11—H11B0.9600
N1—C91.473 (4)C11—H11C0.9600
N1—C81.475 (4)C6—C51.364 (5)
N1—H3010.8580C6—H60.9300
C4—C51.382 (5)C10—H10A0.9600
C4—C31.383 (4)C10—H10B0.9600
C4—H40.9300C10—H10C0.9600
C8—H8A0.9700C5—H50.9300
C1—O1—H201109.5N1—C9—C11109.2 (3)
C3—C2—C7117.1 (3)C10—C9—C11111.2 (3)
C3—C2—C1123.6 (3)N1—C9—H9108.7
C7—C2—C1119.3 (3)C10—C9—H9108.7
O1—C1—C8106.1 (2)C11—C9—H9108.7
O1—C1—C2112.2 (2)C6—C7—C2121.7 (3)
C8—C1—C2109.8 (2)C6—C7—H7119.2
O1—C1—H1109.6C2—C7—H7119.2
C8—C1—H1109.6C9—C11—H11A109.5
C2—C1—H1109.6C9—C11—H11B109.5
C9—N1—C8113.7 (2)H11A—C11—H11B109.5
C9—N1—H301110.9C9—C11—H11C109.5
C8—N1—H30199.5H11A—C11—H11C109.5
C5—C4—C3119.2 (3)H11B—C11—H11C109.5
C5—C4—H4120.4C5—C6—C7119.4 (3)
C3—C4—H4120.4C5—C6—H6120.3
C4—C3—C2121.9 (3)C7—C6—H6120.3
C4—C3—Cl1118.1 (3)C9—C10—H10A109.5
C2—C3—Cl1120.0 (2)C9—C10—H10B109.5
N1—C8—C1110.9 (2)H10A—C10—H10B109.5
N1—C8—H8A109.5C9—C10—H10C109.5
C1—C8—H8A109.5H10A—C10—H10C109.5
N1—C8—H8B109.5H10B—C10—H10C109.5
C1—C8—H8B109.5C6—C5—C4120.8 (3)
H8A—C8—H8B108.1C6—C5—H5119.6
N1—C9—C10110.5 (3)C4—C5—H5119.6
C3—C2—C1—O1−150.5 (3)C9—N1—C8—C1−159.3 (3)
C7—C2—C1—O130.5 (4)O1—C1—C8—N159.9 (3)
C3—C2—C1—C891.8 (3)C2—C1—C8—N1−178.6 (2)
C7—C2—C1—C8−87.2 (3)C8—N1—C9—C10−71.4 (4)
C5—C4—C3—C21.0 (5)C8—N1—C9—C11166.0 (3)
C5—C4—C3—Cl1−179.8 (3)C3—C2—C7—C60.3 (5)
C7—C2—C3—C4−0.9 (5)C1—C2—C7—C6179.4 (3)
C1—C2—C3—C4−180.0 (3)C2—C7—C6—C50.2 (5)
C7—C2—C3—Cl1179.9 (2)C7—C6—C5—C4−0.2 (6)
C1—C2—C3—Cl10.9 (4)C3—C4—C5—C6−0.4 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H201···N1i0.821.972.765 (3)164
N1—H301···O10.862.252.789 (3)121
C6—H6···O1ii0.932.453.283 (4)149

Symmetry codes: (i) y, −x+2, −z+1; (ii) y−1/2, x+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2416).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Koorts, J. & Caira, M. (1985). Acta Cryst. C41, 1372–1374.
  • Koshinaka, E., Kurata, S., Yamagishi, K., Kubo, S. & Kato, H. (1978). Yakugaku Zasshi, 98, 1198–1207. [PubMed]
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography