PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1528.
Published online 2009 June 10. doi:  10.1107/S1600536809021072
PMCID: PMC2969217

2,2′,7,7′-Tetra­bromo-9,9′-spiro­bifluorene toluene hemisolvate

Abstract

There are two independent mol­ecules and one toluene solvent mol­ecule in the asymmetric unit of the title compound, C25H12Br4·0.5C7H8. The dihedral angles between the fluorene ring systems are 85.30 (6) and 84.95 (6)° in the two mol­ecules. The disortions in angles from the ideal sp 3-hybridization geometry around the tetra­hedral C atoms are due to the strain imposed by the central five-membered ring and steric effects.

Related literature

For applications of spiro­bifluorene compounds, see: Hagen et al. (1997 [triangle]); Pudzich et al. (2006 [triangle]); Salbeck et al. (1997 [triangle]); Iour et al. (1990 [triangle]). For details of the synthesis, see: Marsitzky & Carter (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1528-scheme1.jpg

Experimental

Crystal data

  • C25H12Br4·0.5C7H8
  • M r = 678.06
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1528-efi1.jpg
  • a = 14.6593 (18) Å
  • b = 29.549 (4) Å
  • c = 11.3753 (14) Å
  • β = 96.878 (2)°
  • V = 4891.9 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 6.60 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART-CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.189, T max = 0.438 (expected range = 0.161–0.372)
  • 20291 measured reflections
  • 8616 independent reflections
  • 5479 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.091
  • S = 1.01
  • 8616 reflections
  • 586 parameters
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected bond angles (°)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021072/lh2831sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021072/lh2831Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professors Bo Liu and Jianping Guo for supporting this work.

supplementary crystallographic information

Comment

Molecules with a spirobifluorene core have gained wide application in molecular electronics, light-emitting materials production and enantioselective molecular recognition. In addition, macro spiro-organic molecules have attracted interest (Hagen et al., 1997; Salbeck et al., 1997), since they may play a key role in the construction of modern electronic systems and can be used in synthesizing hole transport media which have achieved impressive solar-to-electrical energy conversion efficiencies (James et al., 1990). We are interested in the title compound (TBSBF.0.5(C7H8), due to its versatility and utility in organic synthesis and herein we report its crystal structure.

The asymmetric unit of the title compound is shown in Fig. 1. The disortions in angles from the ideal [109.5°] sp3 hybridization geometry around the tetrahedral C atoms in each molecule [C9 and C34] are due to the strain imposed by the central five-membered ring and from steric effects. The dihedral angles between the fluorene ring systems in each molecule are 85.30 (6) and 84.95 (6)°.

Experimental

The title compound was synthesized according to the published procedure (Marsitzky & Carter, 2001). To a solution of 9,9'-spirobifluorene (8g, 25.3mmol) in chloroform (100mL) was added bromine (16.6g, 103.7mmol) in 20mL of chloroform (Marsitzky & Carter, 2001). The resulting mixture was stirred overnight at room temperature. The precipitate formed was seperated by filtration and washed with methanol to give the crude target compound. The product, TBSBF, was recrystallized from toluene, giving a yield of 55%.

Refinement

H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C—H = 0.93-0.96 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl C atoms.

Figures

Fig. 1.
A view of the asymmetric unit of the title compound: displacement ellipsoids are drawn at the 30% probability level. H atoms are not shown.

Crystal data

C25H12Br4·0.5C7H8F(000) = 2616
Mr = 678.06Dx = 1.841 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3526 reflections
a = 14.6593 (18) Åθ = 2.3–20.5°
b = 29.549 (4) ŵ = 6.60 mm1
c = 11.3753 (14) ÅT = 293 K
β = 96.878 (2)°Block, colorless
V = 4891.9 (10) Å30.30 × 0.20 × 0.15 mm
Z = 8

Data collection

Bruker SMART-CCD diffractometer8616 independent reflections
Radiation source: fine-focus sealed tube5479 reflections with I > 2σ(I)
graphiteRint = 0.045
ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −17→16
Tmin = 0.189, Tmax = 0.438k = −32→35
20291 measured reflectionsl = −7→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0144P)2 + 2.4065P] where P = (Fo2 + 2Fc2)/3
8616 reflections(Δ/σ)max = 0.001
586 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br1−0.17970 (4)0.057801 (18)−0.07187 (6)0.06389 (18)
Br20.41951 (4)0.06834 (2)0.54188 (6)0.0780 (2)
Br30.35211 (4)0.03188 (2)−0.13143 (6)0.0777 (2)
Br4−0.03438 (4)0.24517 (2)0.36220 (7)0.0814 (2)
C1−0.0114 (3)0.07959 (15)0.0645 (4)0.0405 (12)
H1A−0.01040.10400.01300.049*
C2−0.0826 (3)0.04904 (16)0.0512 (4)0.0421 (12)
C3−0.0845 (3)0.01259 (16)0.1269 (5)0.0498 (14)
H3A−0.1329−0.00800.11590.060*
C4−0.0156 (3)0.00654 (15)0.2183 (5)0.0492 (13)
H4A−0.0172−0.01790.26950.059*
C50.0568 (3)0.03736 (14)0.2340 (4)0.0375 (11)
C60.0580 (3)0.07345 (13)0.1547 (4)0.0340 (11)
C70.1378 (3)0.04009 (14)0.3220 (4)0.0388 (12)
C80.1896 (3)0.07777 (14)0.2979 (4)0.0347 (11)
C90.1442 (3)0.10224 (14)0.1875 (4)0.0376 (11)
C100.1674 (4)0.01268 (16)0.4177 (5)0.0501 (13)
H10A0.1320−0.01180.43640.060*
C110.2506 (4)0.02223 (17)0.4859 (5)0.0543 (14)
H11A0.27110.00420.55080.065*
C120.3024 (3)0.05870 (17)0.4562 (5)0.0489 (13)
C130.2726 (3)0.08698 (16)0.3627 (4)0.0432 (12)
H13A0.30780.11160.34430.052*
C140.2467 (3)0.06971 (16)0.0368 (4)0.0424 (12)
H14A0.23880.04000.06040.051*
C150.2998 (3)0.07970 (17)−0.0519 (5)0.0478 (13)
C160.3145 (3)0.12396 (19)−0.0839 (5)0.0560 (15)
H16A0.35220.1300−0.14230.067*
C170.2743 (3)0.15924 (18)−0.0305 (5)0.0534 (14)
H17A0.28470.1890−0.05180.064*
C180.2180 (3)0.14956 (15)0.0554 (4)0.0394 (12)
C190.2059 (3)0.10493 (15)0.0895 (4)0.0350 (11)
C200.1634 (3)0.17866 (15)0.1246 (4)0.0425 (12)
C210.1203 (3)0.15220 (14)0.2018 (4)0.0367 (11)
C220.1474 (4)0.22495 (17)0.1180 (5)0.0603 (15)
H22A0.17560.24280.06540.072*
C230.0893 (4)0.24409 (18)0.1905 (5)0.0644 (16)
H23A0.07890.27520.18860.077*
C240.0467 (3)0.21714 (18)0.2652 (5)0.0534 (14)
C250.0619 (3)0.17116 (16)0.2738 (5)0.0467 (13)
H25A0.03360.15360.32670.056*
Br50.57872 (4)−0.001178 (17)0.78287 (5)0.05951 (17)
Br60.81223 (5)0.319181 (18)0.53771 (6)0.0754 (2)
Br71.08306 (4)0.12112 (2)0.77786 (6)0.06736 (18)
Br80.47421 (4)0.12801 (2)0.17964 (6)0.0820 (2)
C260.6546 (3)0.07355 (16)0.6731 (4)0.0422 (12)
H26A0.67200.05210.62010.051*
C270.6064 (3)0.06097 (15)0.7653 (4)0.0413 (12)
C280.5793 (3)0.09210 (18)0.8438 (4)0.0479 (13)
H28A0.54650.08280.90470.057*
C290.6008 (3)0.13751 (17)0.8321 (5)0.0500 (13)
H29A0.58280.15880.88500.060*
C300.6496 (3)0.15086 (16)0.7401 (4)0.0388 (12)
C310.6764 (3)0.11875 (15)0.6618 (4)0.0360 (11)
C320.6816 (3)0.19535 (15)0.7053 (4)0.0366 (11)
C330.7255 (3)0.19035 (14)0.6042 (4)0.0373 (11)
C340.7297 (3)0.14035 (15)0.5697 (4)0.0381 (11)
C350.6764 (3)0.23790 (17)0.7552 (5)0.0494 (13)
H35A0.64730.24170.82290.059*
C360.7144 (3)0.27440 (17)0.7042 (5)0.0540 (14)
H36A0.71090.30310.73720.065*
C370.7578 (3)0.26854 (15)0.6040 (5)0.0471 (13)
C380.7643 (3)0.22627 (15)0.5533 (4)0.0426 (12)
H38A0.79420.22240.48640.051*
C390.8987 (3)0.12948 (15)0.6703 (4)0.0440 (12)
H39A0.88710.14230.74170.053*
C400.9858 (3)0.11444 (16)0.6533 (5)0.0487 (13)
C411.0036 (3)0.09547 (17)0.5478 (5)0.0533 (14)
H41A1.06270.08570.53900.064*
C420.9350 (3)0.09092 (15)0.4558 (5)0.0507 (14)
H42A0.94720.07790.38490.061*
C430.8474 (3)0.10582 (14)0.4691 (4)0.0391 (12)
C440.8301 (3)0.12461 (14)0.5775 (4)0.0366 (11)
C450.7629 (3)0.10718 (14)0.3877 (4)0.0413 (12)
C460.6939 (3)0.12798 (14)0.4415 (4)0.0394 (12)
C470.7454 (4)0.09201 (16)0.2721 (5)0.0526 (14)
H47A0.79140.07820.23530.063*
C480.6580 (4)0.09780 (17)0.2118 (5)0.0574 (15)
H48A0.64450.08740.13440.069*
C490.5911 (3)0.11913 (17)0.2678 (5)0.0503 (13)
C500.6072 (3)0.13394 (15)0.3832 (4)0.0435 (12)
H50A0.56100.14750.42030.052*
C510.3339 (5)0.1956 (2)0.5276 (6)0.0749 (19)
C520.4214 (6)0.2088 (3)0.5720 (7)0.106 (3)
H52A0.44460.20120.64920.127*
C530.4744 (6)0.2331 (3)0.5035 (10)0.115 (3)
H53A0.53270.24240.53570.138*
C540.4440 (5)0.2438 (2)0.3900 (8)0.095 (2)
H54A0.48080.26020.34420.114*
C550.3587 (5)0.2302 (2)0.3440 (6)0.0751 (18)
H55A0.33750.23660.26540.090*
C560.3035 (4)0.20723 (18)0.4127 (6)0.0645 (16)
H56A0.24430.19930.38080.077*
C570.2722 (5)0.1698 (2)0.5987 (6)0.115 (3)
H57A0.30340.16430.67650.173*
H57B0.25620.14140.56060.173*
H57C0.21740.18700.60470.173*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0470 (3)0.0561 (3)0.0828 (5)−0.0033 (3)−0.0158 (3)−0.0017 (3)
Br20.0596 (4)0.0973 (5)0.0704 (5)0.0069 (3)−0.0195 (3)0.0054 (4)
Br30.0682 (4)0.0893 (5)0.0820 (5)0.0022 (3)0.0355 (4)−0.0194 (4)
Br40.0723 (4)0.0711 (4)0.1045 (6)0.0105 (3)0.0264 (4)−0.0221 (4)
C10.041 (3)0.036 (3)0.046 (3)−0.003 (2)0.012 (3)0.002 (2)
C20.037 (3)0.040 (3)0.048 (3)−0.001 (2)0.002 (2)−0.006 (3)
C30.034 (3)0.040 (3)0.075 (4)−0.008 (2)0.007 (3)−0.007 (3)
C40.052 (3)0.038 (3)0.061 (4)−0.002 (2)0.017 (3)0.005 (3)
C50.042 (3)0.029 (3)0.044 (3)−0.004 (2)0.014 (2)−0.007 (2)
C60.028 (2)0.029 (2)0.047 (3)0.000 (2)0.011 (2)−0.002 (2)
C70.043 (3)0.032 (3)0.042 (3)0.001 (2)0.007 (2)−0.002 (2)
C80.038 (3)0.033 (3)0.034 (3)0.004 (2)0.003 (2)−0.002 (2)
C90.033 (3)0.034 (3)0.046 (3)−0.001 (2)0.004 (2)0.006 (2)
C100.060 (4)0.042 (3)0.049 (3)0.005 (3)0.009 (3)0.010 (3)
C110.068 (4)0.048 (3)0.046 (3)0.020 (3)0.004 (3)0.012 (3)
C120.047 (3)0.053 (3)0.046 (3)0.010 (3)0.002 (3)−0.004 (3)
C130.042 (3)0.045 (3)0.042 (3)−0.001 (2)0.006 (3)0.003 (3)
C140.031 (3)0.044 (3)0.052 (3)0.000 (2)0.003 (2)0.003 (3)
C150.033 (3)0.059 (3)0.052 (4)0.000 (2)0.005 (3)−0.005 (3)
C160.039 (3)0.078 (4)0.052 (4)−0.005 (3)0.013 (3)0.012 (3)
C170.049 (3)0.051 (3)0.061 (4)−0.010 (3)0.008 (3)0.018 (3)
C180.037 (3)0.041 (3)0.040 (3)−0.007 (2)0.000 (2)0.005 (2)
C190.026 (2)0.046 (3)0.032 (3)−0.005 (2)−0.002 (2)0.004 (2)
C200.044 (3)0.034 (3)0.050 (3)−0.008 (2)0.006 (3)0.003 (2)
C210.029 (3)0.035 (3)0.045 (3)−0.002 (2)0.002 (2)−0.002 (2)
C220.063 (4)0.044 (3)0.075 (4)−0.006 (3)0.012 (3)0.010 (3)
C230.067 (4)0.039 (3)0.086 (5)0.004 (3)0.008 (4)0.001 (3)
C240.043 (3)0.054 (4)0.063 (4)−0.001 (3)0.006 (3)−0.009 (3)
C250.040 (3)0.042 (3)0.058 (4)−0.004 (2)0.004 (3)0.005 (3)
Br50.0541 (3)0.0497 (3)0.0768 (4)0.0034 (3)0.0161 (3)0.0126 (3)
Br60.0995 (5)0.0457 (3)0.0841 (5)−0.0111 (3)0.0232 (4)0.0011 (3)
Br70.0457 (3)0.0749 (4)0.0777 (4)−0.0033 (3)−0.0082 (3)0.0151 (3)
Br80.0624 (4)0.1103 (5)0.0674 (4)−0.0060 (4)−0.0166 (3)−0.0071 (4)
C260.033 (3)0.053 (3)0.041 (3)0.010 (2)0.006 (2)0.000 (3)
C270.029 (3)0.045 (3)0.048 (3)0.003 (2)−0.002 (2)0.002 (3)
C280.037 (3)0.067 (4)0.040 (3)−0.001 (3)0.006 (2)0.001 (3)
C290.045 (3)0.055 (3)0.051 (3)0.005 (3)0.008 (3)−0.011 (3)
C300.030 (3)0.048 (3)0.038 (3)0.004 (2)0.003 (2)−0.004 (2)
C310.030 (3)0.042 (3)0.037 (3)0.005 (2)0.008 (2)0.004 (2)
C320.032 (3)0.039 (3)0.038 (3)0.003 (2)0.001 (2)−0.008 (2)
C330.031 (3)0.036 (3)0.045 (3)0.009 (2)0.005 (2)−0.004 (2)
C340.032 (3)0.044 (3)0.039 (3)0.002 (2)0.007 (2)−0.001 (2)
C350.048 (3)0.053 (3)0.049 (3)0.005 (3)0.014 (3)−0.014 (3)
C360.056 (3)0.040 (3)0.065 (4)0.002 (3)0.002 (3)−0.013 (3)
C370.046 (3)0.039 (3)0.055 (4)−0.008 (2)0.006 (3)0.007 (3)
C380.044 (3)0.043 (3)0.042 (3)0.006 (2)0.007 (2)−0.006 (3)
C390.046 (3)0.046 (3)0.041 (3)0.001 (2)0.009 (3)0.002 (2)
C400.040 (3)0.044 (3)0.062 (4)0.000 (2)0.004 (3)0.014 (3)
C410.038 (3)0.057 (3)0.069 (4)0.009 (3)0.024 (3)0.006 (3)
C420.053 (3)0.045 (3)0.058 (4)0.005 (3)0.021 (3)0.001 (3)
C430.037 (3)0.030 (3)0.052 (3)0.003 (2)0.012 (3)0.002 (2)
C440.035 (3)0.033 (3)0.042 (3)0.000 (2)0.010 (2)0.002 (2)
C450.046 (3)0.033 (3)0.046 (3)−0.001 (2)0.011 (3)−0.002 (2)
C460.042 (3)0.033 (3)0.044 (3)0.002 (2)0.008 (3)0.001 (2)
C470.061 (4)0.054 (3)0.045 (4)0.003 (3)0.013 (3)−0.011 (3)
C480.075 (4)0.054 (3)0.042 (3)−0.010 (3)0.003 (3)−0.014 (3)
C490.050 (3)0.056 (3)0.043 (3)−0.008 (3)−0.005 (3)−0.005 (3)
C500.042 (3)0.042 (3)0.048 (3)−0.003 (2)0.009 (3)−0.003 (2)
C510.103 (6)0.063 (4)0.059 (5)0.028 (4)0.012 (4)−0.001 (4)
C520.106 (7)0.133 (7)0.071 (6)0.040 (6)−0.022 (5)−0.024 (5)
C530.073 (6)0.137 (8)0.129 (9)0.011 (5)−0.014 (6)−0.030 (7)
C540.062 (5)0.097 (5)0.124 (7)0.003 (4)0.009 (5)0.001 (5)
C550.074 (5)0.072 (4)0.077 (5)0.005 (4)−0.002 (4)−0.005 (4)
C560.061 (4)0.054 (4)0.076 (5)0.007 (3)−0.001 (4)−0.002 (3)
C570.186 (9)0.066 (4)0.104 (6)0.023 (5)0.062 (6)0.008 (4)

Geometric parameters (Å, °)

Br1—C21.891 (5)C28—C291.388 (6)
Br2—C121.891 (5)C28—H28A0.9300
Br3—C151.889 (5)C29—C301.393 (6)
Br4—C241.905 (5)C29—H29A0.9300
C1—C61.368 (6)C30—C311.390 (6)
C1—C21.375 (6)C30—C321.466 (6)
C1—H1A0.9300C31—C341.520 (6)
C2—C31.382 (6)C32—C351.385 (6)
C3—C41.372 (7)C32—C331.392 (6)
C3—H3A0.9300C33—C381.366 (6)
C4—C51.394 (6)C33—C341.531 (6)
C4—H4A0.9300C34—C461.534 (6)
C5—C61.398 (6)C34—C441.536 (6)
C5—C71.462 (6)C35—C361.374 (6)
C6—C91.532 (6)C35—H35A0.9300
C7—C101.385 (6)C36—C371.381 (7)
C7—C81.393 (6)C36—H36A0.9300
C8—C131.373 (6)C37—C381.384 (6)
C8—C91.530 (6)C38—H38A0.9300
C9—C191.519 (6)C39—C441.375 (6)
C9—C211.531 (6)C39—C401.388 (6)
C10—C111.394 (7)C39—H39A0.9300
C10—H10A0.9300C40—C411.378 (7)
C11—C121.383 (6)C41—C421.369 (7)
C11—H11A0.9300C41—H41A0.9300
C12—C131.382 (6)C42—C431.383 (6)
C13—H13A0.9300C42—H42A0.9300
C14—C191.374 (6)C43—C441.402 (6)
C14—C151.378 (6)C43—C451.455 (6)
C14—H14A0.9300C45—C471.384 (7)
C15—C161.381 (6)C45—C461.387 (6)
C16—C171.375 (6)C46—C501.373 (6)
C16—H16A0.9300C47—C481.390 (7)
C17—C181.383 (6)C47—H47A0.9300
C17—H17A0.9300C48—C491.383 (7)
C18—C191.392 (6)C48—H48A0.9300
C18—C201.466 (6)C49—C501.377 (6)
C20—C211.383 (6)C50—H50A0.9300
C20—C221.388 (6)C51—C561.374 (8)
C21—C251.373 (6)C51—C521.378 (9)
C22—C231.376 (7)C51—C571.493 (8)
C22—H22A0.9300C52—C531.368 (10)
C23—C241.369 (7)C52—H52A0.9300
C23—H23A0.9300C53—C541.353 (10)
C24—C251.378 (6)C53—H53A0.9300
C25—H25A0.9300C54—C551.357 (8)
Br5—C271.896 (4)C54—H54A0.9300
Br6—C371.894 (4)C55—C561.370 (8)
Br7—C401.896 (5)C55—H55A0.9300
Br8—C491.898 (5)C56—H56A0.9300
C26—C311.383 (6)C57—H57A0.9600
C26—C271.384 (6)C57—H57B0.9600
C26—H26A0.9300C57—H57C0.9600
C27—C281.374 (6)
C6—C1—C2118.8 (4)C31—C30—C29119.9 (4)
C6—C1—H1A120.6C31—C30—C32108.3 (4)
C2—C1—H1A120.6C29—C30—C32131.8 (4)
C1—C2—C3121.0 (5)C26—C31—C30120.9 (4)
C1—C2—Br1119.1 (4)C26—C31—C34127.8 (4)
C3—C2—Br1119.9 (4)C30—C31—C34111.3 (4)
C4—C3—C2120.4 (4)C35—C32—C33119.2 (4)
C4—C3—H3A119.8C35—C32—C30131.9 (4)
C2—C3—H3A119.8C33—C32—C30108.8 (4)
C3—C4—C5119.5 (5)C38—C33—C32121.7 (4)
C3—C4—H4A120.3C38—C33—C34127.6 (4)
C5—C4—H4A120.3C32—C33—C34110.5 (4)
C4—C5—C6119.0 (5)C31—C34—C33100.9 (4)
C4—C5—C7131.9 (5)C31—C34—C46114.2 (4)
C6—C5—C7109.1 (4)C33—C34—C46116.9 (4)
C1—C6—C5121.3 (4)C31—C34—C44113.7 (4)
C1—C6—C9128.8 (4)C33—C34—C44110.2 (4)
C5—C6—C9109.9 (4)C46—C34—C44101.5 (4)
C10—C7—C8119.8 (5)C36—C35—C32119.6 (5)
C10—C7—C5131.2 (4)C36—C35—H35A120.2
C8—C7—C5109.0 (4)C32—C35—H35A120.2
C13—C8—C7121.4 (4)C35—C36—C37120.0 (4)
C13—C8—C9128.1 (4)C35—C36—H36A120.0
C7—C8—C9110.3 (4)C37—C36—H36A120.0
C19—C9—C8112.9 (3)C36—C37—C38121.2 (4)
C19—C9—C21101.0 (4)C36—C37—Br6119.2 (4)
C8—C9—C21116.8 (4)C38—C37—Br6119.6 (4)
C19—C9—C6113.4 (4)C33—C38—C37118.2 (4)
C8—C9—C6101.6 (3)C33—C38—H38A120.9
C21—C9—C6111.6 (3)C37—C38—H38A120.9
C7—C10—C11119.3 (5)C44—C39—C40117.4 (5)
C7—C10—H10A120.3C44—C39—H39A121.3
C11—C10—H10A120.3C40—C39—H39A121.3
C12—C11—C10119.4 (5)C41—C40—C39121.7 (5)
C12—C11—H11A120.3C41—C40—Br7119.3 (4)
C10—C11—H11A120.3C39—C40—Br7119.0 (4)
C13—C12—C11121.8 (5)C42—C41—C40120.5 (5)
C13—C12—Br2119.3 (4)C42—C41—H41A119.7
C11—C12—Br2118.9 (4)C40—C41—H41A119.7
C8—C13—C12118.2 (4)C41—C42—C43119.5 (5)
C8—C13—H13A120.9C41—C42—H42A120.3
C12—C13—H13A120.9C43—C42—H42A120.3
C19—C14—C15118.1 (4)C42—C43—C44119.3 (5)
C19—C14—H14A120.9C42—C43—C45132.0 (5)
C15—C14—H14A120.9C44—C43—C45108.7 (4)
C14—C15—C16121.0 (5)C39—C44—C43121.6 (4)
C14—C15—Br3119.2 (4)C39—C44—C34128.3 (4)
C16—C15—Br3119.8 (4)C43—C44—C34110.0 (4)
C17—C16—C15120.9 (5)C47—C45—C46120.0 (5)
C17—C16—H16A119.6C47—C45—C43130.0 (5)
C15—C16—H16A119.6C46—C45—C43109.9 (4)
C16—C17—C18118.6 (5)C50—C46—C45121.7 (5)
C16—C17—H17A120.7C50—C46—C34128.3 (4)
C18—C17—H17A120.7C45—C46—C34109.9 (4)
C17—C18—C19120.0 (5)C45—C47—C48119.0 (5)
C17—C18—C20131.9 (4)C45—C47—H47A120.5
C19—C18—C20108.1 (4)C48—C47—H47A120.5
C14—C19—C18121.3 (4)C49—C48—C47119.4 (5)
C14—C19—C9127.5 (4)C49—C48—H48A120.3
C18—C19—C9111.2 (4)C47—C48—H48A120.3
C21—C20—C22120.3 (5)C50—C49—C48122.3 (5)
C21—C20—C18109.2 (4)C50—C49—Br8120.0 (4)
C22—C20—C18130.4 (5)C48—C49—Br8117.7 (4)
C25—C21—C20120.8 (4)C46—C50—C49117.5 (5)
C25—C21—C9128.6 (4)C46—C50—H50A121.2
C20—C21—C9110.5 (4)C49—C50—H50A121.2
C23—C22—C20119.0 (5)C56—C51—C52117.3 (7)
C23—C22—H22A120.5C56—C51—C57119.7 (7)
C20—C22—H22A120.5C52—C51—C57123.0 (7)
C24—C23—C22119.6 (5)C53—C52—C51120.5 (8)
C24—C23—H23A120.2C53—C52—H52A119.7
C22—C23—H23A120.2C51—C52—H52A119.7
C23—C24—C25122.4 (5)C54—C53—C52121.4 (8)
C23—C24—Br4118.0 (4)C54—C53—H53A119.3
C25—C24—Br4119.6 (4)C52—C53—H53A119.3
C21—C25—C24117.8 (5)C53—C54—C55118.8 (8)
C21—C25—H25A121.1C53—C54—H54A120.6
C24—C25—H25A121.1C55—C54—H54A120.6
C31—C26—C27118.3 (4)C54—C55—C56120.4 (7)
C31—C26—H26A120.8C54—C55—H55A119.8
C27—C26—H26A120.8C56—C55—H55A119.8
C28—C27—C26121.8 (4)C55—C56—C51121.4 (6)
C28—C27—Br5119.8 (4)C55—C56—H56A119.3
C26—C27—Br5118.4 (4)C51—C56—H56A119.3
C27—C28—C29119.8 (5)C51—C57—H57A109.5
C27—C28—H28A120.1C51—C57—H57B109.5
C29—C28—H28A120.1H57A—C57—H57B109.5
C28—C29—C30119.3 (5)C51—C57—H57C109.5
C28—C29—H29A120.4H57A—C57—H57C109.5
C30—C29—H29A120.4H57B—C57—H57C109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2831).

References

  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Marsitzky, D. & Carter, K. R. (2001). Polym. Prepr.42, 450–451.
  • Hagen, J., Schaffrach, W., Otschik, P., Fink, R., Bacher, A., Schmidt, H.-W. & Haarer, D. (1997). Synth. Met.89, 215–220.
  • Iour, J. M., Wu, R. L. & Schumn, J. S. (1990). J. Am. Chem. Soc 112, 5662–5663.
  • Pudzich, R., Fuhrmann-Lieker, T. & Salbeck, J. (2006). Adv. Polym. Sci.199, 83–142.
  • Salbeck, J., Yu, N., Bauer, J., Weissortel, F. & Bestgen, H. (1997). Synth. Met.91, 209–215.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography