PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1539.
Published online 2009 June 10. doi:  10.1107/S1600536809021217
PMCID: PMC2969216

4-Chloro-N-cyclo­hexyl­benzamide

Abstract

In the title compound, C13H16ClNO, the cyclo­hexyl ring adopts a chair conformation, with puckering parameters Q = 0.576 (3) Å, θ = 0.1 (3) and ϕ = 8 (15)°. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds link mol­ecules into one-dimensional chains propagating in [010].

Related literature

For applications of N-substituted benzamides, see: Beccalli et al. (2005 [triangle]); Calderone et al. (2006 [triangle]); Vega-Noverola et al. (1989 [triangle]); Zhichkin et al. (2007 [triangle]); Lindgren et al. (2001 [triangle]); Olsson et al. (2002 [triangle]). For related crystal structures, see: Jones & Kuś (2004 [triangle]); Saeed et al. (2008 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1539-scheme1.jpg

Experimental

Crystal data

  • C13H16ClNO
  • M r = 237.72
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1539-efi1.jpg
  • a = 14.755 (14) Å
  • b = 5.043 (7) Å
  • c = 16.818 (16) Å
  • β = 96.13 (6)°
  • V = 1244 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 173 K
  • 0.12 × 0.08 × 0.06 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.967, T max = 0.983
  • 3651 measured reflections
  • 2388 independent reflections
  • 1497 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.151
  • S = 1.06
  • 2388 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021217/lh2834sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021217/lh2834Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

N-Substituted benzamides, e.g., declopramideare, are well known anticancer compounds and the mechanism of benzamide-induced apoptosis has been studied, (Olsson et al., 2002). N-substituted benzamides inhibit the activity of nuclear factor-B and nuclear factor of activated T cells (Lindgren et al., 2001). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-Noverola et al., 1989), while heterocyclic benzanilide are potassium channel activators (Calderone et al., 2006). N-Alkylated 2-nitrobenzamides are intermediates in the synthesis of dibenzo[b,e][1,4]diazepines (Zhichkin et al., 2007) and N-Acyl-2-nitrobenzamides are precursors of 2,3-disubstitued 3H-quinazoline-4-ones (Beccalli et al., 2005). As part of our work on the structure of benzanilides and related compounds, in this paper, we report the crystal structure of the title compound, (I).

The molecular structure of (I) is presented in Fig. 1. The molecular dimensions in (I) are normal (CSD version 5.30; Allen, 2002). The six-membered ring adopts a chair conformation with puckering parameters: Q = 0.576 (3) Å, θ = 0.1 (3)° and [var phi] = 8(15)° (Cremer & Pople, 1975). The structure is stabilized by hydrogen bonding (N1–H1···O1) forming chains of molecules along the b-axis (details are in Table 1). The crystal structures of closely related compounds have been reported (Saeed et al., 2008; Jones & Kuś, 2004).

Experimental

4-Chlorobenzoyl chloride (5.4 mmol) in CHCl3 was treated with cyclohexylamine (21.6 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded the title compound (87%) as colorless needles: Anal. calcd. for C13H16ClNO,: C, 65.68; H, 6.78; N, 5.89%; found: C, 65.61; H, 6.80; N, 5.91%.

Refinement

All the H-atoms were visible in the difference Fourier maps, they were included in the refinements at geometrically idealized positions with N—H = 0.88 Å and C—H distances = 0.95 - 0.99 Å, and Uiso = 1.2 times Ueq of the atoms to which they were bonded. The final difference map was free of chemically significant features.

Figures

Fig. 1.
ORTEP-3 (Farrugia, 1997) drawing of (I) with displacement ellipsoids plotted at 30% probability level.

Crystal data

C13H16ClNOF(000) = 504
Mr = 237.72Dx = 1.269 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3651 reflections
a = 14.755 (14) Åθ = 3.9–26.0°
b = 5.043 (7) ŵ = 0.29 mm1
c = 16.818 (16) ÅT = 173 K
β = 96.13 (6)°Needle, colorless
V = 1244 (2) Å30.12 × 0.08 × 0.06 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer2388 independent reflections
Radiation source: fine-focus sealed tube1497 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 26.0°, θmin = 3.9°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −18→17
Tmin = 0.967, Tmax = 0.983k = −6→4
3651 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0665P)2 + 0.3764P] where P = (Fo2 + 2Fc2)/3
2388 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.77571 (5)0.29595 (19)0.35603 (5)0.0739 (3)
O10.35835 (12)0.8003 (3)0.37556 (11)0.0489 (5)
N10.32675 (14)0.3654 (4)0.38965 (14)0.0491 (6)
H10.34920.20360.39220.059*
C10.48155 (15)0.4944 (5)0.37540 (13)0.0369 (6)
C20.52269 (17)0.2853 (5)0.41805 (15)0.0462 (6)
H20.48840.18130.45120.055*
C30.61349 (18)0.2254 (6)0.41296 (16)0.0529 (7)
H30.64190.08310.44310.063*
C40.66205 (17)0.3746 (6)0.36373 (15)0.0489 (7)
C50.62262 (18)0.5866 (6)0.32108 (16)0.0539 (7)
H50.65690.68950.28760.065*
C60.53255 (18)0.6464 (5)0.32789 (15)0.0474 (6)
H60.50510.79380.29960.057*
C70.38370 (16)0.5666 (5)0.38013 (13)0.0388 (6)
C80.22970 (16)0.3992 (5)0.39603 (16)0.0484 (7)
H80.21810.59120.40580.058*
C90.20142 (17)0.2430 (7)0.46572 (16)0.0564 (8)
H9A0.23710.30250.51570.068*
H9B0.21420.05240.45820.068*
C100.0997 (2)0.2819 (9)0.4724 (2)0.0789 (11)
H10A0.08160.17310.51710.095*
H10B0.08810.47020.48450.095*
C110.04290 (19)0.2051 (7)0.3968 (2)0.0735 (10)
H11A−0.02210.24210.40220.088*
H11B0.04940.01260.38750.088*
C120.0718 (2)0.3567 (8)0.3267 (2)0.0819 (11)
H12A0.05880.54760.33330.098*
H12B0.03600.29490.27700.098*
C130.1742 (2)0.3193 (7)0.31917 (18)0.0699 (9)
H13A0.18640.13130.30720.084*
H13B0.19200.42890.27460.084*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0443 (4)0.0948 (7)0.0840 (6)0.0035 (4)0.0128 (4)−0.0220 (5)
O10.0535 (11)0.0273 (9)0.0662 (12)0.0040 (8)0.0080 (9)0.0016 (8)
N10.0406 (11)0.0278 (12)0.0806 (15)0.0040 (9)0.0135 (11)0.0015 (10)
C10.0413 (12)0.0304 (12)0.0393 (12)−0.0013 (10)0.0055 (10)−0.0056 (10)
C20.0445 (13)0.0408 (14)0.0535 (15)0.0020 (12)0.0069 (11)0.0053 (12)
C30.0475 (15)0.0517 (17)0.0589 (16)0.0078 (13)0.0025 (12)0.0025 (14)
C40.0410 (13)0.0589 (18)0.0472 (14)−0.0017 (13)0.0063 (11)−0.0165 (13)
C50.0550 (16)0.0583 (18)0.0510 (15)−0.0079 (14)0.0183 (13)−0.0018 (14)
C60.0527 (15)0.0415 (16)0.0486 (14)−0.0019 (12)0.0086 (12)0.0051 (12)
C70.0462 (14)0.0305 (14)0.0399 (13)0.0006 (11)0.0058 (10)−0.0009 (10)
C80.0396 (13)0.0292 (13)0.0768 (18)0.0047 (11)0.0074 (13)−0.0048 (13)
C90.0407 (14)0.078 (2)0.0518 (15)0.0046 (14)0.0100 (12)−0.0119 (14)
C100.0473 (16)0.113 (3)0.080 (2)0.0028 (18)0.0212 (15)−0.016 (2)
C110.0400 (15)0.067 (2)0.113 (3)−0.0003 (14)0.0070 (17)−0.018 (2)
C120.0597 (19)0.088 (3)0.091 (2)0.0080 (18)−0.0240 (17)−0.005 (2)
C130.0609 (18)0.088 (2)0.0589 (17)0.0027 (17)−0.0039 (14)0.0122 (17)

Geometric parameters (Å, °)

Cl1—C41.742 (3)C8—C131.510 (4)
O1—C71.236 (3)C8—H81.0000
N1—C71.338 (3)C9—C101.530 (4)
N1—C81.457 (3)C9—H9A0.9900
N1—H10.8800C9—H9B0.9900
C1—C21.379 (4)C10—C111.496 (5)
C1—C61.386 (3)C10—H10A0.9900
C1—C71.499 (3)C10—H10B0.9900
C2—C31.385 (4)C11—C121.505 (5)
C2—H20.9500C11—H11A0.9900
C3—C41.375 (4)C11—H11B0.9900
C3—H30.9500C12—C131.541 (4)
C4—C51.381 (4)C12—H12A0.9900
C5—C61.379 (4)C12—H12B0.9900
C5—H50.9500C13—H13A0.9900
C6—H60.9500C13—H13B0.9900
C8—C91.508 (4)
C7—N1—C8123.7 (2)C8—C9—C10110.2 (2)
C7—N1—H1118.1C8—C9—H9A109.6
C8—N1—H1118.1C10—C9—H9A109.6
C2—C1—C6119.1 (2)C8—C9—H9B109.6
C2—C1—C7122.1 (2)C10—C9—H9B109.6
C6—C1—C7118.8 (2)H9A—C9—H9B108.1
C1—C2—C3120.6 (2)C11—C10—C9111.7 (3)
C1—C2—H2119.7C11—C10—H10A109.3
C3—C2—H2119.7C9—C10—H10A109.3
C4—C3—C2119.2 (3)C11—C10—H10B109.3
C4—C3—H3120.4C9—C10—H10B109.3
C2—C3—H3120.4H10A—C10—H10B107.9
C3—C4—C5121.2 (3)C10—C11—C12110.8 (3)
C3—C4—Cl1119.2 (2)C10—C11—H11A109.5
C5—C4—Cl1119.6 (2)C12—C11—H11A109.5
C6—C5—C4118.8 (2)C10—C11—H11B109.5
C6—C5—H5120.6C12—C11—H11B109.5
C4—C5—H5120.6H11A—C11—H11B108.1
C5—C6—C1121.0 (3)C11—C12—C13111.3 (3)
C5—C6—H6119.5C11—C12—H12A109.4
C1—C6—H6119.5C13—C12—H12A109.4
O1—C7—N1122.7 (2)C11—C12—H12B109.4
O1—C7—C1121.0 (2)C13—C12—H12B109.4
N1—C7—C1116.3 (2)H12A—C12—H12B108.0
N1—C8—C9110.6 (2)C8—C13—C12110.1 (3)
N1—C8—C13110.7 (2)C8—C13—H13A109.6
C9—C8—C13110.9 (2)C12—C13—H13A109.6
N1—C8—H8108.2C8—C13—H13B109.6
C9—C8—H8108.2C12—C13—H13B109.6
C13—C8—H8108.2H13A—C13—H13B108.1
C6—C1—C2—C3−0.7 (4)C6—C1—C7—O1−32.8 (3)
C7—C1—C2—C3−179.3 (2)C2—C1—C7—N1−34.0 (3)
C1—C2—C3—C4−1.0 (4)C6—C1—C7—N1147.4 (2)
C2—C3—C4—C51.7 (4)C7—N1—C8—C9−132.2 (3)
C2—C3—C4—Cl1−178.9 (2)C7—N1—C8—C13104.5 (3)
C3—C4—C5—C6−0.6 (4)N1—C8—C9—C10179.5 (2)
Cl1—C4—C5—C6−180.0 (2)C13—C8—C9—C10−57.3 (3)
C4—C5—C6—C1−1.2 (4)C8—C9—C10—C1156.9 (4)
C2—C1—C6—C51.8 (4)C9—C10—C11—C12−56.0 (4)
C7—C1—C6—C5−179.5 (2)C10—C11—C12—C1355.5 (4)
C8—N1—C7—O1−0.3 (4)N1—C8—C13—C12−179.8 (3)
C8—N1—C7—C1179.5 (2)C9—C8—C13—C1257.0 (3)
C2—C1—C7—O1145.9 (2)C11—C12—C13—C8−56.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.062.901 (5)160

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2834).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Beccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61, 61–68.
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Calderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem.41, 761–767. [PubMed]
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Jones, P. G. & Kuś, P. (2004). Acta Cryst. E60, o1299–o1300.
  • Lindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol.38, 267–277. [PubMed]
  • Olsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971–978. [PMC free article] [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Saeed, A., Abbas, N., Hussain, S. & Flörke, U. (2008). Acta Cryst. E64, o773. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780.
  • Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett.9, 1415–1418. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography