PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1590.
Published online 2009 June 17. doi:  10.1107/S1600536809021825
PMCID: PMC2969213

rac-7-Oxabicyclo­[2.2.1]heptane-2,3-dicarboxylic acid–2-amino-1,3,4-thia­diazole–water (1/1/1)

Abstract

The title compound, C8H10O5·C2H3N3S·H2O, was synthesized by the reaction of 2-amino-1,3,4-thia­diazole with norcantharidin. The crystal structure is stabilized by N—H(...)O, N—H(...)N, O—H(...)O and O—H(...)N hydrogen bonds. In addition, weak π–π inter­actions are observed between symmetry-related thia­diazole ring systems [centroid–centroid distance = 3.9110 (3) Å, inter­planar spacing = 3.4845 Å].

Related literature

7-Oxabicyclo­[2.2.1]heptane-2,3-dicarboxylic anhydride (nor­cantharidin) is a lower toxicity anti­cancer drug, see: Shimi & Zaki (1982 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1590-scheme1.jpg

Experimental

Crystal data

  • C8H10O5·C2H3N3S·H2O
  • M r = 305.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1590-efi1.jpg
  • a = 5.7678 (5) Å
  • b = 18.4267 (15) Å
  • c = 12.7546 (11) Å
  • β = 101.336 (6)°
  • V = 1329.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 296 K
  • 0.30 × 0.16 × 0.09 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.949, T max = 0.977
  • 10820 measured reflections
  • 2995 independent reflections
  • 2026 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.133
  • S = 1.05
  • 2995 reflections
  • 187 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021825/at2800sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021825/at2800Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301) for financial support.

supplementary crystallographic information

Comment

7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin) derived from cantharidin is a lower toxicity anticancer drug (Shimi & Zaki, 1982). The title compound was synthesized by the reaction of 2-amino-1,3,4-thiadiazole with 7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin). In this paper, we reports its structure.

X-ray crystallography measurement confirmed the molecular structure and the atom connectivity for the title compound (Fig. 1). The crystal structure is stabilized by N—H···O, N—H···N, O—H···O and O—H···N hydrogen bonds (Table 1). Further, weak π–π interactions are observed between symmetry related thiadiazole ring systems [centroid-centroid distance of 3.9110 (3)Å and interplanar spacing of 3.4845 Å].

Experimental

7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride and 2-amino-1,3,4-thiadiazole were dissolved in tetrahydrofuran and the mixture was stirred for 6 h at room temperature. The clear solution was left undisturbed for days to give colourless crystals of the compound.

Refinement

The H atoms bonded to C and N atoms were positioned geometrically and refined using ariding model [C—H =0.93- 0.98 Å, N—H = 0.86 Å and O—H = 0.82 Å and Uiso(H) = 1.2 or 1.5Ueq(C,N,O)]. The H atoms of the water molecule were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability.

Crystal data

C8H10O5·C2H3N3S·H2OF(000) = 640
Mr = 305.31Dx = 1.526 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1905 reflections
a = 5.7678 (5) Åθ = 2.0–27.6°
b = 18.4267 (15) ŵ = 0.27 mm1
c = 12.7546 (11) ÅT = 296 K
β = 101.336 (6)°Block, colourless
V = 1329.1 (2) Å30.30 × 0.16 × 0.09 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer2995 independent reflections
Radiation source: fine-focus sealed tube2026 reflections with I > 2σ(I)
graphiteRint = 0.040
ω scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −6→7
Tmin = 0.949, Tmax = 0.977k = −24→23
10820 measured reflectionsl = −16→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.062P)2 + 0.3174P] where P = (Fo2 + 2Fc2)/3
2995 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 0.30 e Å3
3 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.2976 (5)0.05357 (14)0.3265 (2)0.0537 (7)
H1B−0.38800.09470.30530.064*
C2−0.0094 (4)−0.03835 (13)0.37115 (19)0.0401 (6)
C3−0.7049 (4)−0.14263 (12)−0.02775 (19)0.0371 (5)
H3A−0.7478−0.1570−0.10310.044*
C4−0.4729 (4)−0.10527 (12)0.11367 (19)0.0378 (5)
H4A−0.3228−0.08810.15630.045*
C5−0.5597 (4)−0.17663 (11)0.15371 (18)0.0308 (5)
H5A−0.6555−0.16490.20690.037*
C6−0.7289 (4)−0.20482 (11)0.05131 (18)0.0320 (5)
H6A−0.8916−0.20800.06300.038*
C7−0.8388 (4)−0.07593 (13)−0.0002 (2)0.0436 (6)
H7A−0.9932−0.08880.01350.052*
H7B−0.8573−0.0399−0.05660.052*
C8−0.6732 (4)−0.04919 (12)0.1016 (2)0.0451 (6)
H8A−0.7506−0.04990.16260.054*
H8B−0.6158−0.00060.09250.054*
C9−0.3734 (4)−0.23059 (12)0.20304 (18)0.0339 (5)
C10−0.6556 (4)−0.27519 (12)0.00717 (19)0.0357 (5)
S1−0.00230 (12)0.04890 (3)0.32282 (6)0.0514 (2)
N10.1766 (3)−0.08184 (12)0.39063 (18)0.0534 (6)
H1A0.1631−0.12500.41450.064*
H1C0.3110−0.06700.37940.064*
N2−0.2197 (3)−0.05840 (10)0.38689 (17)0.0431 (5)
N3−0.3854 (4)−0.00394 (11)0.36078 (19)0.0511 (6)
O1−0.4621 (3)−0.12182 (8)0.00484 (13)0.0399 (4)
O1W0.3491 (3)0.19399 (12)0.19534 (16)0.0573 (5)
O2−0.1540 (3)−0.20904 (9)0.21051 (15)0.0470 (5)
H2A−0.0641−0.24050.24050.071*
O3−0.4251 (3)−0.28854 (9)0.23715 (14)0.0453 (4)
O4−0.4568 (3)−0.28772 (9)−0.00388 (16)0.0527 (5)
O5−0.8343 (3)−0.31955 (9)−0.02355 (17)0.0575 (5)
H5B−0.7870−0.3568−0.04740.086*
H1WA0.213 (4)0.1986 (18)0.212 (2)0.086*
H1WB0.317 (5)0.2024 (19)0.1311 (15)0.086*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0577 (16)0.0398 (14)0.064 (2)0.0017 (11)0.0119 (14)0.0069 (13)
C20.0431 (13)0.0412 (13)0.0358 (14)−0.0098 (10)0.0075 (10)−0.0022 (10)
C30.0419 (13)0.0369 (12)0.0311 (13)0.0077 (9)0.0038 (10)−0.0009 (10)
C40.0383 (12)0.0342 (12)0.0394 (14)−0.0035 (9)0.0041 (10)0.0000 (10)
C50.0310 (11)0.0334 (11)0.0289 (12)0.0019 (8)0.0081 (9)0.0004 (9)
C60.0280 (11)0.0316 (11)0.0371 (14)0.0013 (8)0.0081 (9)−0.0036 (9)
C70.0443 (13)0.0368 (12)0.0486 (16)0.0118 (10)0.0062 (11)0.0015 (11)
C80.0606 (16)0.0306 (12)0.0448 (16)0.0032 (10)0.0119 (12)−0.0033 (11)
C90.0339 (12)0.0390 (12)0.0300 (13)0.0015 (9)0.0094 (9)−0.0002 (10)
C100.0366 (13)0.0334 (12)0.0365 (14)0.0016 (9)0.0058 (10)−0.0027 (9)
S10.0575 (4)0.0399 (4)0.0583 (5)−0.0095 (3)0.0150 (3)0.0073 (3)
N10.0475 (12)0.0419 (12)0.0697 (17)−0.0015 (9)0.0089 (11)0.0107 (11)
N20.0455 (11)0.0354 (10)0.0480 (13)−0.0044 (8)0.0085 (9)0.0048 (9)
N30.0462 (12)0.0434 (12)0.0625 (15)0.0023 (9)0.0083 (11)0.0072 (11)
O10.0417 (9)0.0391 (9)0.0425 (10)0.0032 (7)0.0170 (7)0.0082 (7)
O1W0.0381 (10)0.0837 (14)0.0524 (12)−0.0079 (9)0.0140 (9)−0.0121 (11)
O20.0315 (9)0.0499 (10)0.0589 (12)0.0004 (7)0.0068 (8)0.0103 (8)
O30.0374 (9)0.0435 (9)0.0558 (12)0.0049 (7)0.0108 (8)0.0171 (8)
O40.0406 (10)0.0447 (10)0.0747 (14)0.0032 (7)0.0163 (9)−0.0214 (9)
O50.0411 (10)0.0362 (9)0.0954 (16)−0.0057 (7)0.0137 (9)−0.0213 (10)

Geometric parameters (Å, °)

C1—N31.287 (3)C6—H6A0.9800
C1—S11.715 (3)C7—C81.534 (3)
C1—H1B0.9300C7—H7A0.9700
C2—N21.320 (3)C7—H7B0.9700
C2—N11.323 (3)C8—H8A0.9700
C2—S11.725 (2)C8—H8B0.9700
C3—O11.433 (3)C9—O31.212 (3)
C3—C71.529 (3)C9—O21.311 (3)
C3—C61.550 (3)C10—O41.205 (3)
C3—H3A0.9800C10—O51.313 (3)
C4—O11.434 (3)N1—H1A0.8600
C4—C51.530 (3)N1—H1C0.8600
C4—C81.535 (3)N2—N31.381 (3)
C4—H4A0.9800O1W—H1WA0.859 (17)
C5—C91.508 (3)O1W—H1WB0.819 (17)
C5—C61.558 (3)O2—H2A0.8200
C5—H5A0.9800O5—H5B0.8200
C6—C101.507 (3)
N3—C1—S1115.3 (2)C5—C6—H6A110.7
N3—C1—H1B122.4C3—C7—C8101.18 (17)
S1—C1—H1B122.4C3—C7—H7A111.5
N2—C2—N1122.5 (2)C8—C7—H7A111.5
N2—C2—S1113.71 (18)C3—C7—H7B111.5
N1—C2—S1123.80 (18)C8—C7—H7B111.5
O1—C3—C7103.14 (18)H7A—C7—H7B109.4
O1—C3—C6102.49 (17)C7—C8—C4101.53 (18)
C7—C3—C6109.34 (19)C7—C8—H8A111.5
O1—C3—H3A113.6C4—C8—H8A111.5
C7—C3—H3A113.6C7—C8—H8B111.5
C6—C3—H3A113.6C4—C8—H8B111.5
O1—C4—C5102.67 (17)H8A—C8—H8B109.3
O1—C4—C8102.77 (18)O3—C9—O2122.9 (2)
C5—C4—C8108.84 (18)O3—C9—C5121.68 (19)
O1—C4—H4A113.8O2—C9—C5115.39 (19)
C5—C4—H4A113.8O4—C10—O5123.7 (2)
C8—C4—H4A113.8O4—C10—C6123.5 (2)
C9—C5—C4116.94 (17)O5—C10—C6112.67 (18)
C9—C5—C6114.05 (17)C1—S1—C286.76 (12)
C4—C5—C6101.48 (17)C2—N1—H1A120.0
C9—C5—H5A108.0C2—N1—H1C120.0
C4—C5—H5A108.0H1A—N1—H1C120.0
C6—C5—H5A108.0C2—N2—N3111.89 (19)
C10—C6—C3108.99 (18)C1—N3—N2112.4 (2)
C10—C6—C5115.12 (17)C3—O1—C496.42 (15)
C3—C6—C5100.22 (17)H1WA—O1W—H1WB101 (2)
C10—C6—H6A110.7C9—O2—H2A109.5
C3—C6—H6A110.7C10—O5—H5B109.5
O1—C4—C5—C990.1 (2)C6—C5—C9—O3−62.0 (3)
C8—C4—C5—C9−161.49 (19)C4—C5—C9—O22.8 (3)
O1—C4—C5—C6−34.65 (19)C6—C5—C9—O2120.9 (2)
C8—C4—C5—C673.8 (2)C3—C6—C10—O465.8 (3)
O1—C3—C6—C10−86.2 (2)C5—C6—C10—O4−45.8 (3)
C7—C3—C6—C10164.91 (18)C3—C6—C10—O5−110.5 (2)
O1—C3—C6—C535.06 (19)C5—C6—C10—O5137.9 (2)
C7—C3—C6—C5−73.9 (2)N3—C1—S1—C20.4 (2)
C9—C5—C6—C10−10.1 (3)N2—C2—S1—C1−0.1 (2)
C4—C5—C6—C10116.51 (19)N1—C2—S1—C1179.7 (2)
C9—C5—C6—C3−126.86 (18)N1—C2—N2—N3−179.9 (2)
C4—C5—C6—C3−0.22 (19)S1—C2—N2—N3−0.1 (3)
O1—C3—C7—C8−34.6 (2)S1—C1—N3—N2−0.5 (3)
C6—C3—C7—C873.9 (2)C2—N2—N3—C10.4 (3)
C3—C7—C8—C40.3 (2)C7—C3—O1—C456.17 (19)
O1—C4—C8—C733.9 (2)C6—C3—O1—C4−57.40 (18)
C5—C4—C8—C7−74.5 (2)C5—C4—O1—C357.35 (18)
C4—C5—C9—O3179.9 (2)C8—C4—O1—C3−55.63 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.112.930 (3)160
N1—H1C···N3ii0.862.152.994 (3)166
N1—H1C···N2ii0.862.693.519 (3)161
O2—H2A···O1Wiii0.821.812.626 (2)176
O5—H5B···N2iv0.821.852.664 (2)172
O1W—H1WA···O3v0.86 (2)1.91 (2)2.766 (2)175 (3)
O1W—H1WB···O4vi0.82 (2)2.51 (3)3.151 (3)137 (3)
O1W—H1WB···O1vi0.82 (2)2.55 (3)3.061 (3)122 (3)

Symmetry codes: (i) x+1/2, −y−1/2, z+1/2; (ii) x+1, y, z; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x−1/2, −y−1/2, z−1/2; (v) −x−1/2, y+1/2, −z+1/2; (vi) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2800).

References

  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shimi, I. R. & Zaki, Z. (1982). Eur. J. Cancer Clin. Oncol.18, 785–793. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography