PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1715.
Published online 2009 June 27. doi:  10.1107/S1600536809024118
PMCID: PMC2969207

2,6-Bis(2-chloro­ethyl)-8b,8c-diphenyl­perhydro-2,3a,4a,6,7a,8a-hexa­azacyclo­penta­[def]fluorene-4,8-dithione

Abstract

In the title mol­ecule, C24H26Cl2N6S2, the two phenyl rings form a dihedral angle of 51.95 (7)° and the distance between their centroids is 4.156 (8) Å. The crystal packing exhibits weak inter­molecular C—H(...)S and C—H(...)N hydrogen bonds.

Related literature

For applications of glycoluril derivatives, see: Wu et al. (2002 [triangle]). For a related structure, see: Wang & Xi (2009 [triangle]). For details of the synthesis, see: Ramos & Rosen (1981 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1715-scheme1.jpg

Experimental

Crystal data

  • C24H26Cl2N6S2
  • M r = 533.53
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1715-efi1.jpg
  • a = 8.7566 (2) Å
  • b = 14.0877 (3) Å
  • c = 20.8575 (5) Å
  • β = 99.525 (1)°
  • V = 2537.52 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.45 mm−1
  • T = 298 K
  • 0.23 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART 4K CCD area-detector diffractometer
  • Absorption correction: none
  • 16129 measured reflections
  • 4979 independent reflections
  • 3375 reflections with I > 2σ(I)
  • R int = 0.078

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.164
  • S = 1.02
  • 4979 reflections
  • 307 parameters
  • H-atom parameters constrained
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809024118/cv2576sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024118/cv2576Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor An-Xin Wu for technical assistance and Dr Meng Xiang-Gao for the data collection.

supplementary crystallographic information

Comment

Glycoluril derivatives have many areas of applications, such as explosives, slow-release fertilizers, cross-linkers, stabilizers of organic compounds against photodegradation, and as reagents in combinatorial chemistry (Wu et al., 2002). Also, The rigid concave shape of glycoluril makes it a versatile building block to construct various supramolecular objects (Wang & Xi, 2009). We report here the structure of the title thioglycoluril derivative (Fig. 1), which is a potential receptor in supramolecular chemistry.

In the title compound all bond lengths and angles are normal and comparable with those observed in the related structure (Wang & Xi, 2009). The crystal packing is stabilized by intermolecular C–H···S and C—H···N hydrogen bonds (Table 1).

Experimental

The title compound was synthesized according to the procedure reported by Ramos & Rosen (1981). Crystals appropriate for X-ray data collection were obtained by slow evaporation of the dichloromethane solution at 293 K.

Refinement

All H atoms were initially located in a difference Fourier map and then included with constrained bond lengths and isotropic displacement parameters: C—H = 0.93 Å and Uĩso~(H) = 1.2 U~eq~(C) for aromatic H atoms, C—H = 0.97 Å and Uĩso~(H) = 1.2 U~eq~(C) for methylene H atoms, C—H = 0.96 Å and Uĩso~(H) = 1.5 U~eq~(C) for methyl H atoms.

Figures

Fig. 1.
View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius.

Crystal data

C24H26Cl2N6S2F(000) = 1112
Mr = 533.53Dx = 1.397 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2851 reflections
a = 8.7566 (2) Åθ = 2.5–21.7°
b = 14.0877 (3) ŵ = 0.45 mm1
c = 20.8575 (5) ÅT = 298 K
β = 99.525 (1)°Block, colourless
V = 2537.52 (10) Å30.23 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker SMART 4K CCD area-detector diffractometer3375 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.078
graphiteθmax = 26.0°, θmin = 1.8°
[var phi] and ω scansh = −10→10
16129 measured reflectionsk = −17→17
4979 independent reflectionsl = −18→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0798P)2] where P = (Fo2 + 2Fc2)/3
4979 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = −0.51 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.5265 (5)0.0996 (4)0.4154 (2)0.0757 (13)
H1A0.44970.08980.44340.091*
H1B0.54580.16730.41360.091*
C20.4639 (4)0.0657 (3)0.34973 (18)0.0501 (9)
H2A0.4466−0.00220.35160.060*
H2B0.36420.09560.33560.060*
C30.5429 (3)0.0178 (2)0.24750 (17)0.0394 (8)
H3A0.5366−0.04610.26410.047*
H3B0.63240.02100.22570.047*
C40.5586 (4)0.1811 (2)0.27789 (16)0.0393 (8)
H4A0.64830.19250.25720.047*
H4B0.56430.22420.31450.047*
C50.2613 (3)−0.0038 (2)0.19965 (15)0.0319 (7)
C60.2848 (3)0.2397 (2)0.24636 (15)0.0314 (7)
C70.3878 (3)0.13561 (19)0.17632 (14)0.0281 (7)
C80.4933 (3)0.1550 (2)0.12701 (15)0.0342 (7)
C90.5363 (4)0.0818 (3)0.08934 (17)0.0493 (9)
H90.50210.02030.09470.059*
C100.6305 (5)0.1006 (4)0.0436 (2)0.0679 (13)
H100.65920.05160.01820.081*
C110.6819 (5)0.1918 (4)0.0354 (2)0.0725 (14)
H110.74450.20410.00440.087*
C120.6409 (4)0.2640 (3)0.0727 (2)0.0670 (12)
H120.67630.32530.06760.080*
C130.5465 (4)0.2455 (3)0.11833 (18)0.0494 (9)
H130.51840.29490.14360.059*
C140.2095 (3)0.14683 (19)0.15257 (14)0.0278 (7)
C150.1585 (3)0.1754 (2)0.08262 (15)0.0336 (7)
C160.1323 (4)0.1075 (3)0.03430 (17)0.0496 (9)
H160.14400.04360.04500.060*
C170.0888 (5)0.1341 (3)−0.02984 (19)0.0687 (12)
H170.07190.0879−0.06210.082*
C180.0703 (5)0.2282 (4)−0.0463 (2)0.0752 (14)
H180.03920.2458−0.08940.090*
C190.0978 (5)0.2958 (3)0.0012 (2)0.0714 (13)
H190.08700.3597−0.00980.086*
C200.1416 (4)0.2694 (3)0.06534 (18)0.0522 (10)
H200.15990.31590.09730.063*
C21−0.0141 (3)0.0516 (2)0.17475 (16)0.0345 (7)
H21A−0.07840.06570.13340.041*
H21B−0.0404−0.01170.18760.041*
C220.0005 (3)0.2145 (2)0.20563 (17)0.0384 (8)
H22A−0.06280.23410.16520.046*
H22B−0.01630.25930.23910.046*
C230.0225 (4)0.0944 (2)0.28981 (15)0.0383 (8)
H23A0.01570.14850.31800.046*
H23B0.13130.08060.29060.046*
C24−0.0531 (4)0.0101 (2)0.31604 (17)0.0429 (8)
H24A−0.0589−0.04250.28570.052*
H24B−0.15730.02620.32230.052*
Cl10.69817 (17)0.04249 (16)0.44949 (7)0.1337 (8)
Cl20.06244 (11)−0.02216 (7)0.39222 (5)0.0585 (3)
N10.5631 (3)0.08436 (18)0.30145 (13)0.0382 (7)
N20.4172 (3)0.20160 (16)0.23108 (12)0.0304 (6)
N30.4014 (3)0.03855 (16)0.20014 (13)0.0301 (6)
N40.1644 (3)0.21709 (16)0.19809 (12)0.0303 (6)
N50.1496 (3)0.05305 (16)0.16642 (12)0.0289 (6)
N6−0.0485 (3)0.11945 (18)0.22321 (13)0.0356 (6)
S10.23332 (10)−0.10921 (6)0.23090 (5)0.0516 (3)
S20.27222 (11)0.30702 (6)0.31074 (4)0.0461 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.065 (3)0.104 (4)0.059 (3)0.015 (3)0.015 (2)0.001 (3)
C20.041 (2)0.064 (2)0.045 (2)−0.0041 (17)0.0059 (17)0.0122 (19)
C30.0314 (17)0.0371 (18)0.049 (2)0.0063 (14)0.0052 (16)0.0086 (16)
C40.0339 (18)0.0444 (19)0.040 (2)−0.0068 (14)0.0066 (15)−0.0017 (16)
C50.0287 (16)0.0280 (16)0.040 (2)0.0012 (12)0.0087 (14)−0.0048 (14)
C60.0374 (17)0.0230 (15)0.0350 (19)0.0003 (12)0.0097 (15)0.0045 (13)
C70.0300 (16)0.0241 (15)0.0307 (17)0.0008 (12)0.0068 (13)−0.0010 (13)
C80.0279 (16)0.0418 (19)0.0333 (18)−0.0004 (13)0.0061 (14)0.0005 (15)
C90.042 (2)0.061 (2)0.047 (2)0.0026 (17)0.0154 (18)−0.0076 (19)
C100.050 (2)0.112 (4)0.046 (3)0.015 (2)0.023 (2)−0.014 (2)
C110.047 (2)0.124 (4)0.051 (3)−0.011 (3)0.021 (2)0.016 (3)
C120.057 (3)0.088 (3)0.058 (3)−0.022 (2)0.015 (2)0.019 (3)
C130.057 (2)0.051 (2)0.043 (2)−0.0113 (17)0.0161 (18)0.0069 (17)
C140.0305 (16)0.0233 (15)0.0313 (17)0.0030 (12)0.0105 (13)−0.0017 (13)
C150.0329 (17)0.0358 (17)0.0340 (19)0.0058 (13)0.0113 (14)−0.0005 (14)
C160.070 (3)0.044 (2)0.036 (2)0.0072 (18)0.0130 (19)−0.0031 (17)
C170.102 (4)0.073 (3)0.031 (2)0.007 (3)0.011 (2)−0.009 (2)
C180.093 (4)0.102 (4)0.032 (2)0.020 (3)0.016 (2)0.022 (3)
C190.103 (4)0.063 (3)0.051 (3)0.023 (2)0.019 (3)0.024 (2)
C200.073 (3)0.042 (2)0.043 (2)0.0065 (18)0.012 (2)0.0064 (18)
C210.0276 (16)0.0409 (18)0.0349 (19)−0.0010 (13)0.0048 (14)0.0002 (15)
C220.0340 (17)0.0412 (19)0.041 (2)0.0118 (14)0.0105 (15)−0.0007 (16)
C230.0374 (18)0.0450 (19)0.034 (2)−0.0018 (15)0.0086 (15)−0.0027 (15)
C240.0354 (18)0.053 (2)0.041 (2)−0.0052 (15)0.0065 (16)0.0053 (17)
Cl10.0874 (10)0.253 (2)0.0537 (8)0.0758 (12)−0.0083 (7)0.0002 (10)
Cl20.0556 (6)0.0663 (6)0.0516 (6)−0.0015 (5)0.0029 (5)0.0170 (5)
N10.0297 (14)0.0429 (16)0.0413 (17)0.0002 (12)0.0033 (12)0.0062 (13)
N20.0316 (14)0.0296 (13)0.0307 (15)−0.0033 (11)0.0076 (11)−0.0015 (11)
N30.0241 (13)0.0236 (13)0.0426 (16)0.0012 (10)0.0058 (11)0.0019 (11)
N40.0342 (14)0.0255 (13)0.0319 (15)0.0052 (10)0.0077 (12)−0.0022 (11)
N50.0270 (13)0.0264 (13)0.0340 (15)−0.0008 (10)0.0074 (11)0.0005 (11)
N60.0320 (14)0.0409 (16)0.0356 (16)0.0058 (11)0.0105 (12)0.0000 (12)
S10.0454 (5)0.0260 (5)0.0856 (8)−0.0009 (4)0.0169 (5)0.0123 (5)
S20.0600 (6)0.0389 (5)0.0420 (6)−0.0011 (4)0.0163 (5)−0.0135 (4)

Geometric parameters (Å, °)

C1—C21.469 (6)C12—C131.384 (5)
C1—Cl11.749 (4)C12—H120.9300
C1—H1A0.9700C13—H130.9300
C1—H1B0.9700C14—N51.468 (3)
C2—N11.459 (4)C14—N41.470 (3)
C2—H2A0.9700C14—C151.508 (4)
C2—H2B0.9700C15—C201.374 (4)
C3—N11.453 (4)C15—C161.381 (4)
C3—N31.480 (4)C16—C171.381 (5)
C3—H3A0.9700C16—H160.9300
C3—H3B0.9700C17—C181.372 (6)
C4—N11.447 (4)C17—H170.9300
C4—N21.473 (4)C18—C191.366 (6)
C4—H4A0.9700C18—H180.9300
C4—H4B0.9700C19—C201.381 (5)
C5—N51.362 (4)C19—H190.9300
C5—N31.363 (4)C20—H200.9300
C5—S11.656 (3)C21—N61.458 (4)
C6—N21.362 (4)C21—N51.472 (4)
C6—N41.369 (4)C21—H21A0.9700
C6—S21.662 (3)C21—H21B0.9700
C7—N31.453 (3)C22—N41.470 (4)
C7—N21.462 (4)C22—N61.471 (4)
C7—C81.517 (4)C22—H22A0.9700
C7—C141.565 (4)C22—H22B0.9700
C8—C131.379 (4)C23—N61.468 (4)
C8—C91.385 (4)C23—C241.506 (4)
C9—C101.386 (5)C23—H23A0.9700
C9—H90.9300C23—H23B0.9700
C10—C111.381 (6)C24—Cl21.795 (3)
C10—H100.9300C24—H24A0.9700
C11—C121.364 (6)C24—H24B0.9700
C11—H110.9300
C2—C1—Cl1113.1 (3)C20—C15—C16118.6 (3)
C2—C1—H1A109.0C20—C15—C14120.8 (3)
Cl1—C1—H1A109.0C16—C15—C14120.5 (3)
C2—C1—H1B109.0C17—C16—C15120.4 (3)
Cl1—C1—H1B109.0C17—C16—H16119.8
H1A—C1—H1B107.8C15—C16—H16119.8
N1—C2—C1114.3 (3)C18—C17—C16120.4 (4)
N1—C2—H2A108.7C18—C17—H17119.8
C1—C2—H2A108.7C16—C17—H17119.8
N1—C2—H2B108.7C19—C18—C17119.6 (4)
C1—C2—H2B108.7C19—C18—H18120.2
H2A—C2—H2B107.6C17—C18—H18120.2
N1—C3—N3111.8 (2)C18—C19—C20120.1 (4)
N1—C3—H3A109.3C18—C19—H19120.0
N3—C3—H3A109.3C20—C19—H19120.0
N1—C3—H3B109.3C15—C20—C19121.0 (4)
N3—C3—H3B109.3C15—C20—H20119.5
H3A—C3—H3B107.9C19—C20—H20119.5
N1—C4—N2112.5 (2)N6—C21—N5112.9 (2)
N1—C4—H4A109.1N6—C21—H21A109.0
N2—C4—H4A109.1N5—C21—H21A109.0
N1—C4—H4B109.1N6—C21—H21B109.0
N2—C4—H4B109.1N5—C21—H21B109.0
H4A—C4—H4B107.8H21A—C21—H21B107.8
N5—C5—N3108.4 (2)N4—C22—N6112.3 (2)
N5—C5—S1126.0 (2)N4—C22—H22A109.1
N3—C5—S1125.5 (2)N6—C22—H22A109.1
N2—C6—N4108.5 (3)N4—C22—H22B109.1
N2—C6—S2125.9 (2)N6—C22—H22B109.1
N4—C6—S2125.5 (2)H22A—C22—H22B107.9
N3—C7—N2109.7 (2)N6—C23—C24113.0 (3)
N3—C7—C8112.1 (2)N6—C23—H23A109.0
N2—C7—C8111.5 (2)C24—C23—H23A109.0
N3—C7—C14103.0 (2)N6—C23—H23B109.0
N2—C7—C14102.7 (2)C24—C23—H23B109.0
C8—C7—C14117.1 (2)H23A—C23—H23B107.8
C13—C8—C9118.9 (3)C23—C24—Cl2107.7 (2)
C13—C8—C7120.8 (3)C23—C24—H24A110.2
C9—C8—C7120.3 (3)Cl2—C24—H24A110.2
C10—C9—C8119.8 (4)C23—C24—H24B110.2
C10—C9—H9120.1Cl2—C24—H24B110.2
C8—C9—H9120.1H24A—C24—H24B108.5
C11—C10—C9120.4 (4)C4—N1—C3110.6 (3)
C11—C10—H10119.8C4—N1—C2114.7 (3)
C9—C10—H10119.8C3—N1—C2114.1 (3)
C12—C11—C10120.0 (4)C6—N2—C7112.7 (2)
C12—C11—H11120.0C6—N2—C4125.2 (3)
C10—C11—H11120.0C7—N2—C4114.4 (2)
C11—C12—C13119.7 (4)C5—N3—C7112.7 (2)
C11—C12—H12120.1C5—N3—C3124.9 (3)
C13—C12—H12120.1C7—N3—C3115.2 (2)
C8—C13—C12121.2 (4)C6—N4—C14112.0 (2)
C8—C13—H13119.4C6—N4—C22125.0 (3)
C12—C13—H13119.4C14—N4—C22115.1 (2)
N5—C14—N4109.6 (2)C5—N5—C14112.3 (2)
N5—C14—C15111.8 (2)C5—N5—C21124.3 (2)
N4—C14—C15112.1 (2)C14—N5—C21115.0 (2)
N5—C14—C7102.5 (2)C21—N6—C23113.2 (2)
N4—C14—C7102.9 (2)C21—N6—C22108.8 (2)
C15—C14—C7117.0 (2)C23—N6—C22111.1 (3)
Cl1—C1—C2—N1−63.9 (4)C8—C7—N2—C6132.9 (3)
N3—C7—C8—C13−153.4 (3)C14—C7—N2—C66.7 (3)
N2—C7—C8—C13−29.9 (4)N3—C7—N2—C448.9 (3)
C14—C7—C8—C1388.0 (4)C8—C7—N2—C4−75.9 (3)
N3—C7—C8—C927.4 (4)C14—C7—N2—C4157.9 (2)
N2—C7—C8—C9150.9 (3)N1—C4—N2—C693.6 (3)
C14—C7—C8—C9−91.2 (3)N1—C4—N2—C7−53.5 (3)
C13—C8—C9—C10−0.4 (5)N5—C5—N3—C710.2 (3)
C7—C8—C9—C10178.8 (3)S1—C5—N3—C7−172.8 (2)
C8—C9—C10—C110.1 (6)N5—C5—N3—C3158.9 (3)
C9—C10—C11—C120.4 (7)S1—C5—N3—C3−24.0 (4)
C10—C11—C12—C13−0.6 (7)N2—C7—N3—C5103.0 (3)
C9—C8—C13—C120.2 (5)C8—C7—N3—C5−132.5 (3)
C7—C8—C13—C12−179.0 (3)C14—C7—N3—C5−5.8 (3)
C11—C12—C13—C80.3 (6)N2—C7—N3—C3−48.9 (3)
N3—C7—C14—N5−0.4 (3)C8—C7—N3—C375.5 (3)
N2—C7—C14—N5−114.4 (2)C14—C7—N3—C3−157.8 (2)
C8—C7—C14—N5123.1 (3)N1—C3—N3—C5−95.3 (3)
N3—C7—C14—N4113.5 (2)N1—C3—N3—C752.8 (3)
N2—C7—C14—N4−0.6 (3)N2—C6—N4—C1410.1 (3)
C8—C7—C14—N4−123.1 (3)S2—C6—N4—C14−172.8 (2)
N3—C7—C14—C15−123.1 (3)N2—C6—N4—C22157.3 (2)
N2—C7—C14—C15122.9 (3)S2—C6—N4—C22−25.5 (4)
C8—C7—C14—C150.3 (4)N5—C14—N4—C6102.9 (3)
N5—C14—C15—C20151.7 (3)C15—C14—N4—C6−132.2 (3)
N4—C14—C15—C2028.1 (4)C7—C14—N4—C6−5.6 (3)
C7—C14—C15—C20−90.5 (3)N5—C14—N4—C22−47.8 (3)
N5—C14—C15—C16−30.2 (4)C15—C14—N4—C2277.1 (3)
N4—C14—C15—C16−153.9 (3)C7—C14—N4—C22−156.4 (2)
C7—C14—C15—C1687.5 (4)N6—C22—N4—C6−92.4 (3)
C20—C15—C16—C17−0.5 (5)N6—C22—N4—C1454.0 (3)
C14—C15—C16—C17−178.6 (3)N3—C5—N5—C14−10.4 (3)
C15—C16—C17—C18−0.3 (6)S1—C5—N5—C14172.6 (2)
C16—C17—C18—C191.1 (7)N3—C5—N5—C21−156.7 (3)
C17—C18—C19—C20−1.0 (7)S1—C5—N5—C2126.3 (4)
C16—C15—C20—C190.7 (5)N4—C14—N5—C5−102.4 (3)
C14—C15—C20—C19178.7 (3)C15—C14—N5—C5132.6 (3)
C18—C19—C20—C150.1 (7)C7—C14—N5—C56.5 (3)
N6—C23—C24—Cl2171.8 (2)N4—C14—N5—C2147.2 (3)
N2—C4—N1—C354.4 (3)C15—C14—N5—C21−77.8 (3)
N2—C4—N1—C2−76.3 (3)C7—C14—N5—C21156.1 (2)
N3—C3—N1—C4−53.6 (3)N6—C21—N5—C592.0 (3)
N3—C3—N1—C277.5 (3)N6—C21—N5—C14−53.5 (3)
C1—C2—N1—C4−77.7 (4)N5—C21—N6—C23−68.8 (3)
C1—C2—N1—C3153.3 (3)N5—C21—N6—C2255.2 (3)
N4—C6—N2—C7−10.6 (3)C24—C23—N6—C21−71.7 (3)
S2—C6—N2—C7172.3 (2)C24—C23—N6—C22165.6 (2)
N4—C6—N2—C4−158.2 (3)N4—C22—N6—C21−55.4 (3)
S2—C6—N2—C424.7 (4)N4—C22—N6—C2369.9 (3)
N3—C7—N2—C6−102.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C24—H24B···N1i0.972.553.485 (4)162
C22—H22B···S1ii0.972.803.607 (3)141

Symmetry codes: (i) x−1, y, z; (ii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2576).

References

  • Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ramos, S. & Rosen, W. (1981). J. Org. Chem 46, 3530–3533.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Z. & Xi, H. (2009). Acta Cryst. E65, o1426. [PMC free article] [PubMed]
  • Wu, A., Chakraborty, A., Witl, D., Lagona, J., Damkaci, F., Ofori, M. A., Chiles, J. K., Fettinger, J. C. & Isaacs, L. (2002). J. Org. Chem 67, 5817–5830. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography