PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1463.
Published online 2009 June 6. doi:  10.1107/S1600536809020194
PMCID: PMC2969202

8-Chloro-2-methyl­quinoline

Abstract

In the title compound, C10H8ClN, the crystal packing shows π–π stacking between the heterocyclic ring and the aromatic ring, with a centroid–centroid distance of 3.819 Å. The crystal studied was a racemic twin, the ratio of the twin components being 0.65 (7):0.35 (7).

Related literature

The title compound is an important inter­mediate in the pharmaceutical industry, see: Shen & Hartwig (2006 [triangle]); Ranu et al. (2000 [triangle]); Lee & Hartwig (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1463-scheme1.jpg

Experimental

Crystal data

  • C10H8ClN
  • M r = 177.62
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1463-efi1.jpg
  • a = 12.7961 (9) Å
  • b = 5.0660 (4) Å
  • c = 13.1181 (9) Å
  • V = 850.38 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.39 mm−1
  • T = 173 K
  • 0.47 × 0.46 × 0.23 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.840, T max = 0.917
  • 3943 measured reflections
  • 1821 independent reflections
  • 1703 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.075
  • S = 1.09
  • 1821 reflections
  • 111 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809020194/bt2969sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020194/bt2969Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was funded by the SIT program of Hunan University (2008).

supplementary crystallographic information

Comment

The structure of the title compound, 8-chloro-2-methylquinoline, is shown in Fig 1. It is an important intermediate of medecine industry (Shen et al., 2006; Ranu et al., 2000; Lee et al., 2005). The crystal packing shows π-π stacking between the N containing aromatic ring and the aromatic ring with the chloro substituent with a centroid-centroid distance of 3.819Å.

Experimental

A solution of 13 g of 2-chloroaniline in 200 mL chlorobenzene and 0.5 g of p-toluenesulfonic acid was heated to 393 K. 14 g of crotonaldehyde were added dropwise with in 1 h, then refluxed for 2 h. The solution was concentrated under reduced pressure to give rude product, which was then recrystallizated from dimethylbenzene to get 10 g of the product as a white solid. The yield was 57%. Crystals suitable for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement

H atom were positioned geometrically (Caromatic—H = 0.95 Å, Cmethyl—H = 0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(Caromatic) or Uiso(H) = 1.5Ueq(Cmethyl). The crystal under investigation turned out to be a racemic twin with a ratio of the twin components of 0.65 (7) to 0.35 (7).

Figures

Fig. 1.
Molecular structure of the title compound showing 50% probability displacement ellipsoids.

Crystal data

C10H8ClNDx = 1.387 Mg m3
Mr = 177.62Melting point: 333 K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2761 reflections
a = 12.7961 (9) Åθ = 3.1–27.0°
b = 5.0660 (4) ŵ = 0.39 mm1
c = 13.1181 (9) ÅT = 173 K
V = 850.38 (11) Å3Block, colourless
Z = 40.47 × 0.46 × 0.23 mm
F(000) = 368

Data collection

Bruker SMART 1000 CCD diffractometer1821 independent reflections
Radiation source: fine-focus sealed tube1703 reflections with I > 2σ(I)
graphiteRint = 0.016
ω scansθmax = 27.1°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −16→16
Tmin = 0.840, Tmax = 0.917k = −2→6
3943 measured reflectionsl = −15→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0403P)2 + 0.17P] where P = (Fo2 + 2Fc2)/3
1821 reflections(Δ/σ)max = 0.004
111 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = −0.16 e Å3

Special details

Experimental. MS (m/z):M+ 177. 1H NMR(CDCl3,400 MHz,delta dppm): 2.83(s,3H,CH3), 7.38(m,2H,quinoline 3,6-H), 7.80(d, J=7.2 Hz,1H, quinoline 7-H),8.03(d, J =8.0 Hz,1H,quinoline 5-H), 8.00(d,J = 8.4 Hz, 1H,quinoline 4-H)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.13075 (3)−0.06692 (9)−0.13065 (4)0.03616 (14)
C10.33097 (14)0.5106 (4)0.00528 (15)0.0286 (4)
C20.33961 (16)0.5667 (4)0.11114 (16)0.0336 (4)
H20.38730.69710.13450.040*
C30.27923 (15)0.4323 (3)0.17875 (15)0.0323 (4)
H30.28460.46750.24970.039*
C40.20807 (14)0.2386 (3)0.14243 (14)0.0277 (4)
C50.14115 (15)0.0969 (4)0.20801 (15)0.0327 (4)
H50.14270.12930.27930.039*
C60.07432 (15)−0.0864 (4)0.16908 (16)0.0349 (4)
H60.0285−0.17920.21340.042*
C70.07260 (15)−0.1394 (4)0.06385 (16)0.0330 (4)
H70.0266−0.27010.03770.040*
C80.13698 (14)−0.0033 (4)−0.00123 (15)0.0271 (4)
C90.20665 (13)0.1930 (3)0.03548 (13)0.0248 (3)
C100.39634 (17)0.6615 (5)−0.06992 (17)0.0393 (5)
H10A0.47000.6137−0.06130.059*
H10B0.38770.8513−0.05820.059*
H10C0.37400.6181−0.13940.059*
N10.26803 (12)0.3289 (3)−0.03180 (11)0.0268 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0393 (2)0.0441 (3)0.0251 (2)−0.00280 (19)−0.0036 (2)−0.0074 (2)
C10.0279 (9)0.0261 (8)0.0319 (10)0.0032 (7)−0.0008 (8)0.0037 (7)
C20.0343 (10)0.0291 (10)0.0374 (11)−0.0015 (8)−0.0081 (8)−0.0030 (8)
C30.0397 (10)0.0305 (9)0.0266 (9)0.0039 (8)−0.0052 (8)−0.0054 (7)
C40.0320 (9)0.0253 (9)0.0259 (9)0.0060 (7)−0.0009 (7)−0.0001 (7)
C50.0412 (10)0.0344 (10)0.0223 (9)0.0063 (8)0.0002 (8)0.0031 (7)
C60.0339 (10)0.0382 (11)0.0325 (10)−0.0010 (8)0.0045 (8)0.0086 (8)
C70.0297 (9)0.0334 (10)0.0360 (10)−0.0033 (8)−0.0023 (8)0.0029 (8)
C80.0294 (9)0.0310 (8)0.0209 (9)0.0033 (7)−0.0029 (7)−0.0013 (7)
C90.0253 (8)0.0245 (8)0.0247 (9)0.0056 (7)−0.0025 (7)0.0005 (6)
C100.0408 (10)0.0375 (10)0.0396 (12)−0.0067 (10)0.0004 (9)0.0082 (9)
N10.0265 (7)0.0274 (7)0.0264 (8)0.0039 (6)0.0013 (6)0.0030 (6)

Geometric parameters (Å, °)

Cl1—C81.730 (2)C5—H50.9500
C1—N11.316 (3)C6—C71.407 (3)
C1—C21.422 (3)C6—H60.9500
C1—C101.503 (3)C7—C81.372 (3)
C2—C31.359 (3)C7—H70.9500
C2—H20.9500C8—C91.420 (3)
C3—C41.421 (2)C9—N11.367 (2)
C3—H30.9500C10—H10A0.9800
C4—C51.410 (3)C10—H10B0.9800
C4—C91.422 (2)C10—H10C0.9800
C5—C61.362 (3)
N1—C1—C2123.25 (18)C7—C6—H6119.7
N1—C1—C10116.99 (18)C8—C7—C6120.36 (18)
C2—C1—C10119.76 (18)C8—C7—H7119.8
C3—C2—C1119.55 (18)C6—C7—H7119.8
C3—C2—H2120.2C7—C8—C9121.19 (18)
C1—C2—H2120.2C7—C8—Cl1119.30 (15)
C2—C3—C4119.44 (18)C9—C8—Cl1119.49 (15)
C2—C3—H3120.3N1—C9—C8119.62 (16)
C4—C3—H3120.3N1—C9—C4123.21 (16)
C5—C4—C3122.42 (17)C8—C9—C4117.16 (16)
C5—C4—C9120.76 (17)C1—C10—H10A109.5
C3—C4—C9116.82 (16)C1—C10—H10B109.5
C6—C5—C4119.98 (18)H10A—C10—H10B109.5
C6—C5—H5120.0C1—C10—H10C109.5
C4—C5—H5120.0H10A—C10—H10C109.5
C5—C6—C7120.54 (18)H10B—C10—H10C109.5
C5—C6—H6119.7C1—N1—C9117.70 (16)
N1—C1—C2—C3−1.4 (3)Cl1—C8—C9—N1−0.1 (2)
C10—C1—C2—C3179.05 (18)C7—C8—C9—C41.1 (2)
C1—C2—C3—C4−0.3 (3)Cl1—C8—C9—C4179.55 (13)
C2—C3—C4—C5−178.29 (18)C5—C4—C9—N1178.44 (15)
C2—C3—C4—C91.5 (2)C3—C4—C9—N1−1.4 (2)
C3—C4—C5—C6179.90 (17)C5—C4—C9—C8−1.2 (2)
C9—C4—C5—C60.1 (3)C3—C4—C9—C8178.99 (15)
C4—C5—C6—C71.1 (3)C2—C1—N1—C91.5 (3)
C5—C6—C7—C8−1.2 (3)C10—C1—N1—C9−178.87 (16)
C6—C7—C8—C90.1 (3)C8—C9—N1—C1179.50 (16)
C6—C7—C8—Cl1−178.36 (15)C4—C9—N1—C1−0.1 (2)
C7—C8—C9—N1−178.55 (17)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2969).

References

  • Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lee, D.-Y. & Hartwig, J.-F. (2005). Org. Lett.7, 1169–1172. [PubMed]
  • Ranu, B. C., Hajra, A. & Jana, U. (2000). Tetrahedron Lett.41 531–533.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shen, Q.-L. & Hartwig, F. (2006). J. Am. Chem. Soc.128, 10028–10029. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography