PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m726.
Published online 2009 June 6. doi:  10.1107/S1600536809020169
PMCID: PMC2969201

(2-Carboxy­benzoato-κ2 O 1,O 1′)(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­azacyclo­tetra­decane-κ4 N)nickel(II) perchlorate monohydrate

Abstract

The title compound, [Ni(C8H5O4)(C16H36N4)]ClO4·H2O, has the NiII atom in a distorted octa­hedral geometry, surrounded by coordination by four N atoms of the 5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­azacyclo­tetra­decane ligand in a folded configuration, and two carboxyl­ate O atoms of the 2-carboxy­benzoate ligand in cis positions. The complex cation, the disordered perchlorate anion [occupancies 0.639 (8):0.361 (8)] and uncoordinated water mol­ecules engage in N—H(...)O and O—H(...)O hydrogen bonding, forming a layer structure parallel to (010).

Related literature

For background literature, see: Tait & Busch (1976 [triangle]); Curtis (1965 [triangle]). For related crystal structures, see: Zeigerson et al. (1982 [triangle]); Gao et al. (2002 [triangle]); Burrows et al. (2004 [triangle]); Ou et al. (2008 [triangle]). For a discussion of helical coordination polymers, see: Khatua et al. (2006 [triangle]); Lonnon et al. (2006 [triangle]); Telfer & Kuroda (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m726-scheme1.jpg

Experimental

Crystal data

  • [Ni(C8H5O4)(C16H36N4)]ClO4·H2O
  • M r = 625.78
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m726-efi1.jpg
  • a = 9.7941 (12) Å
  • b = 17.354 (2) Å
  • c = 17.619 (2) Å
  • β = 102.105 (2)°
  • V = 2928.2 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.81 mm−1
  • T = 173 K
  • 0.46 × 0.41 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.707, T max = 0.868
  • 14639 measured reflections
  • 6322 independent reflections
  • 4597 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.151
  • S = 1.07
  • 6322 reflections
  • 411 parameters
  • 47 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.77 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 1999 [triangle]); cell refinement: SAINT-Plus (Bruker, 1999 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809020169/ng2586sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020169/ng2586Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the Foundation for University Key Teachers of the Education Department of Hunan Province and the Key Subject Construction Project of Hunan Province (No. 2006–180).

supplementary crystallographic information

Comment

Recently, many helical structures were constructed through the coordination interactions, and helical polymers constructed via hydrogen bonding are still rare, and only a few cases have been reported (Khatua et al., 2006; Lonnon et al., 2006; Telfer & Kuroda, 2005). Then we employ racemic nickel(II) complex and phthalic acid as building blocks to construct helical structure, but the result of experiment indicate a racemic complex of [Ni(rac-L)(Hpt)(ClO4)].H2O (pt=phthalic acid) is obtained.

In the asymmetric unit of (I), contains one [Ni(rac-L)(Hpt)]+ cation, one [ClO4]- anion and one water molecule. The [ClO4]- anion is disordered over two symmetry related sites with 50% occupancy. As illustrated in Fig.1, The six-coordinated Ni2+ of [Ni(rac-L)(Hpt)]+ cation displays a distorted octahedral geometry by coordination with four N atoms of macrocyclic ligand L in a folded configuration, and two carboxylate oxygen atoms of phthalic acid in cis-position. Neighbouring cations, anions and water molecule are discrete, connected to each other through intermolecular hydrogen bond.

Experimental

Phthalic acid (H2pt, 0.166 g, 1 mmol) was mixed with NaOH (0.040 g, 1 mmol) dissolved in 10 ml of water. To this solution was added [Ni(rac-L)](ClO4)2 (0.541 g, 1 mmol) dissolved in a minimum amount of CH3CN. The solution was left to stand at room temperature and blue crystals formed after several weeks.

Refinement

H atoms bound to C, O and N atoms were positioned geometrically and refined using the riding model, and with C—H = 0.95 to 1.00 Å, O—H = 0.84 Å and N—H = 0.93 Å, and with U(H) set to 1.2 to 1.5 Ueq(C, O, N).

H atoms attached to O (water) atoms were located in difference Fourier maps and condtrained to ride on their carrier atoms, with O—H distances in the range 0.86 Å, and with Uiso (H) = 1.2 times Ueq (O).

Disorder in the [ClO4]- anion required the Cl–O distance to be restrained to 1.44±0.01 Å and the O–O distance to 2.35±0.02 Å.

Figures

Fig. 1.
The molecular structure of (I), showing displacement ellipsoids at the 30% probability level. H-atoms have been excluded for clarity.
Fig. 2.
A view of the packing of the title compound.

Crystal data

[Ni(C8H5O4)(C16H36N4)]ClO4·H2OF(000) = 1328
Mr = 625.78Dx = 1.420 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.7941 (12) ÅCell parameters from 5283 reflections
b = 17.354 (2) Åθ = 2.4–27.0°
c = 17.619 (2) ŵ = 0.81 mm1
β = 102.105 (2)°T = 173 K
V = 2928.2 (6) Å3Block, blue
Z = 40.46 × 0.41 × 0.18 mm

Data collection

Bruker SMART CCD area-detector diffractometer6322 independent reflections
Radiation source: fine-focus sealed tube4597 reflections with I > 2σ(I)
graphiteRint = 0.030
[var phi] and ω scansθmax = 27.1°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→11
Tmin = 0.707, Tmax = 0.868k = −22→17
14639 measured reflectionsl = −22→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0858P)2 + 1.13P] where P = (Fo2 + 2Fc2)/3
6322 reflections(Δ/σ)max < 0.001
411 parametersΔρmax = 0.77 e Å3
47 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ni10.32081 (4)0.21532 (2)0.13185 (2)0.02393 (14)
O10.1559 (2)0.29722 (12)0.13918 (12)0.0279 (5)
O20.2165 (2)0.27282 (12)0.02880 (13)0.0277 (5)
N10.4733 (3)0.30047 (15)0.17667 (16)0.0292 (6)
H1C0.42290.34320.18710.035*
O3−0.0163 (3)0.18524 (14)−0.05475 (14)0.0379 (6)
N30.1821 (3)0.12179 (15)0.09356 (16)0.0307 (6)
H3A0.12060.13950.04950.037*
N40.4586 (3)0.15922 (15)0.07460 (16)0.0291 (6)
H4D0.52150.13090.11090.035*
C170.1329 (3)0.30254 (17)0.06606 (19)0.0257 (7)
C180.0067 (3)0.34386 (17)0.02248 (18)0.0251 (6)
N20.3653 (3)0.17186 (16)0.24485 (16)0.0313 (6)
H2C0.42810.13140.24650.038*
C23−0.0603 (3)0.32076 (19)−0.05238 (19)0.0282 (7)
O4−0.0144 (3)0.25603 (16)−0.15998 (15)0.0474 (7)
H40.00420.2136−0.17840.071*
C110.5392 (4)0.2112 (2)0.0331 (2)0.0342 (8)
H110.47140.2448−0.00250.041*
C24−0.0246 (3)0.2465 (2)−0.08727 (19)0.0306 (7)
C30.2428 (4)0.1426 (2)0.2747 (2)0.0381 (8)
H30.17120.18450.26870.046*
C10.5447 (4)0.2708 (2)0.2534 (2)0.0387 (8)
H1A0.59360.31340.28540.046*
H1B0.61500.23170.24680.046*
C20.4381 (4)0.2353 (2)0.2933 (2)0.0395 (9)
H2A0.48500.21500.34470.047*
H2B0.36970.27480.30130.047*
C22−0.1695 (4)0.3647 (2)−0.0938 (2)0.0392 (8)
H22−0.21330.3500−0.14510.047*
C90.2719 (4)0.0646 (2)0.0655 (2)0.0399 (8)
H9A0.21310.02710.03080.048*
H9B0.32740.03600.11010.048*
C130.6348 (4)0.2627 (2)0.0907 (2)0.0358 (8)
H13A0.70540.28450.06390.043*
H13B0.68540.22940.13300.043*
C19−0.0391 (4)0.40969 (19)0.0544 (2)0.0337 (8)
H190.00590.42590.10500.040*
C140.5715 (4)0.3301 (2)0.1285 (2)0.0355 (8)
C40.2814 (6)0.1203 (3)0.3605 (2)0.0602 (12)
H4A0.35320.08000.36790.090*
H4B0.19830.10090.37710.090*
H4C0.31740.16550.39160.090*
C7−0.0259 (4)0.1456 (2)0.1469 (2)0.0433 (9)
H7A0.01420.19580.16480.065*
H7B−0.08350.12700.18230.065*
H7C−0.08370.15090.09460.065*
C20−0.1508 (4)0.4520 (2)0.0127 (2)0.0415 (9)
H20−0.18290.49640.03530.050*
C100.3674 (4)0.1046 (2)0.0226 (2)0.0363 (8)
H10A0.42550.06620.00240.044*
H10B0.31170.1329−0.02220.044*
C150.4879 (4)0.3840 (2)0.0673 (2)0.0425 (9)
H15A0.40440.35720.03920.064*
H15B0.54570.39940.03070.064*
H15C0.46010.42990.09280.064*
C21−0.2147 (4)0.4296 (2)−0.0612 (2)0.0446 (9)
H21−0.29010.4590−0.08980.053*
C50.1784 (4)0.0737 (2)0.2264 (2)0.0419 (9)
H5A0.25520.03830.22130.050*
H5B0.11860.04600.25640.050*
C60.0915 (4)0.0883 (2)0.1453 (2)0.0378 (8)
C160.6912 (4)0.3766 (3)0.1778 (3)0.0499 (10)
H16A0.65270.41550.20780.075*
H16B0.74460.40200.14380.075*
H16C0.75270.34190.21340.075*
C120.6241 (4)0.1662 (3)−0.0161 (2)0.0482 (10)
H12A0.68380.12860.01680.072*
H12B0.68230.2020−0.03840.072*
H12C0.56030.1392−0.05790.072*
C80.0254 (5)0.0123 (2)0.1121 (3)0.0574 (12)
H8A−0.01660.01900.05690.086*
H8B−0.0470−0.00300.14000.086*
H8C0.0973−0.02780.11810.086*
O1W0.0544 (3)0.14387 (16)−0.23970 (16)0.0481 (7)
H2W0.118 (3)0.111 (2)−0.221 (2)0.058*
H1W0.072 (4)0.161 (2)−0.2823 (14)0.058*
Cl10.3438 (6)−0.0040 (3)−0.2176 (3)0.0381 (10)0.639 (8)
Cl1'0.3673 (10)0.0103 (6)−0.2158 (6)0.0362 (18)0.361 (8)
O50.4344 (13)0.0455 (7)−0.2420 (9)0.203 (6)0.639 (8)
O60.3623 (8)−0.0075 (5)−0.1357 (3)0.110 (3)0.639 (8)
O70.3697 (8)−0.0818 (3)−0.2264 (4)0.073 (2)0.639 (8)
O80.2001 (5)0.0061 (3)−0.2550 (3)0.0588 (18)0.639 (8)
O5'0.2976 (14)0.0479 (5)−0.2866 (5)0.088 (5)0.361 (8)
O6'0.4169 (15)−0.0535 (8)−0.2485 (9)0.101 (5)0.361 (8)
O7'0.4898 (15)0.0527 (8)−0.1817 (8)0.152 (8)0.361 (8)
O8'0.2850 (14)0.0248 (7)−0.1601 (7)0.098 (4)0.361 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0271 (2)0.0244 (2)0.0195 (2)0.00258 (16)0.00305 (15)−0.00112 (15)
O10.0295 (12)0.0330 (12)0.0216 (11)0.0013 (9)0.0061 (9)0.0000 (9)
O20.0262 (12)0.0310 (11)0.0264 (12)0.0036 (9)0.0067 (9)0.0019 (9)
N10.0267 (14)0.0304 (14)0.0297 (15)0.0014 (11)0.0040 (11)−0.0041 (11)
O30.0481 (15)0.0336 (12)0.0308 (13)−0.0032 (11)0.0052 (11)0.0010 (11)
N30.0349 (16)0.0295 (14)0.0276 (14)−0.0039 (12)0.0066 (12)0.0000 (11)
N40.0297 (15)0.0295 (13)0.0263 (14)0.0020 (11)0.0013 (11)−0.0028 (11)
C170.0266 (16)0.0248 (15)0.0257 (16)−0.0030 (13)0.0056 (13)−0.0008 (12)
C180.0275 (16)0.0261 (15)0.0240 (15)0.0011 (13)0.0107 (13)0.0055 (12)
N20.0353 (16)0.0343 (15)0.0246 (14)0.0051 (12)0.0072 (12)0.0018 (12)
C230.0266 (17)0.0320 (16)0.0270 (16)0.0019 (13)0.0075 (13)0.0052 (13)
O40.070 (2)0.0463 (15)0.0302 (14)0.0120 (14)0.0210 (13)0.0026 (12)
C110.0335 (19)0.0417 (19)0.0280 (17)0.0011 (15)0.0082 (14)−0.0003 (15)
C240.0273 (17)0.0380 (18)0.0255 (17)0.0003 (14)0.0031 (13)0.0011 (14)
C30.046 (2)0.0404 (19)0.0307 (18)0.0032 (16)0.0146 (16)0.0054 (15)
C10.038 (2)0.046 (2)0.0284 (18)0.0028 (17)0.0008 (15)−0.0055 (15)
C20.048 (2)0.044 (2)0.0223 (17)0.0004 (17)−0.0005 (15)−0.0046 (15)
C220.037 (2)0.047 (2)0.0315 (19)0.0065 (17)0.0015 (15)0.0058 (16)
C90.047 (2)0.0314 (17)0.041 (2)−0.0025 (16)0.0076 (17)−0.0084 (15)
C130.0241 (17)0.0445 (19)0.040 (2)−0.0014 (15)0.0104 (15)−0.0005 (16)
C190.040 (2)0.0340 (17)0.0293 (18)0.0055 (15)0.0119 (15)0.0038 (14)
C140.0290 (18)0.0378 (19)0.040 (2)−0.0038 (15)0.0074 (15)−0.0027 (15)
C40.083 (3)0.066 (3)0.032 (2)−0.004 (2)0.011 (2)0.011 (2)
C70.038 (2)0.051 (2)0.043 (2)−0.0073 (17)0.0136 (17)0.0032 (18)
C200.045 (2)0.041 (2)0.043 (2)0.0164 (17)0.0174 (17)0.0065 (17)
C100.039 (2)0.0370 (18)0.0336 (19)0.0012 (15)0.0087 (15)−0.0113 (15)
C150.045 (2)0.0372 (19)0.046 (2)−0.0041 (17)0.0120 (18)0.0066 (17)
C210.038 (2)0.052 (2)0.043 (2)0.0179 (18)0.0095 (17)0.0129 (18)
C50.058 (3)0.0343 (18)0.036 (2)−0.0039 (17)0.0169 (18)0.0123 (16)
C60.046 (2)0.0337 (18)0.0355 (19)−0.0096 (16)0.0123 (16)0.0036 (15)
C160.037 (2)0.057 (2)0.055 (3)−0.0129 (19)0.0075 (18)−0.009 (2)
C120.043 (2)0.066 (3)0.039 (2)−0.003 (2)0.0167 (18)−0.0105 (19)
C80.067 (3)0.049 (2)0.062 (3)−0.026 (2)0.027 (2)−0.007 (2)
O1W0.069 (2)0.0448 (16)0.0372 (15)0.0128 (14)0.0273 (14)0.0081 (12)
Cl10.0404 (19)0.0348 (18)0.0393 (12)0.0025 (14)0.0087 (11)0.0016 (10)
Cl1'0.035 (3)0.034 (3)0.040 (2)0.005 (3)0.0083 (19)0.006 (2)
O50.180 (9)0.197 (9)0.234 (10)−0.089 (7)0.044 (8)0.110 (8)
O60.092 (5)0.180 (7)0.054 (4)0.050 (5)0.010 (3)−0.003 (4)
O70.068 (5)0.056 (4)0.086 (5)0.017 (3)−0.006 (3)0.009 (3)
O80.045 (3)0.063 (3)0.063 (3)0.016 (2)0.000 (2)−0.012 (3)
O5'0.124 (11)0.046 (5)0.069 (7)0.021 (6)−0.040 (7)0.004 (5)
O6'0.085 (8)0.090 (8)0.109 (9)0.056 (7)−0.025 (6)−0.050 (7)
O7'0.27 (2)0.110 (11)0.073 (9)−0.111 (13)0.018 (11)−0.030 (8)
O8'0.121 (9)0.099 (7)0.080 (7)0.041 (6)0.033 (7)−0.005 (6)

Geometric parameters (Å, °)

Ni1—N42.087 (3)C13—C141.539 (5)
Ni1—N22.088 (3)C13—H13A0.9900
Ni1—N12.131 (3)C13—H13B0.9900
Ni1—N32.133 (3)C19—C201.393 (5)
Ni1—O22.135 (2)C19—H190.9500
Ni1—O12.176 (2)C14—C151.529 (5)
Ni1—C172.475 (3)C14—C161.533 (5)
O1—C171.264 (4)C4—H4A0.9800
O2—C171.262 (4)C4—H4B0.9800
N1—C11.478 (4)C4—H4C0.9800
N1—C141.501 (4)C7—C61.524 (5)
N1—H1C0.9300C7—H7A0.9800
O3—C241.202 (4)C7—H7B0.9800
N3—C91.479 (4)C7—H7C0.9800
N3—C61.516 (4)C20—C211.378 (6)
N3—H3A0.9300C20—H200.9500
N4—C101.480 (4)C10—H10A0.9900
N4—C111.488 (4)C10—H10B0.9900
N4—H4D0.9300C15—H15A0.9800
C17—C181.495 (4)C15—H15B0.9800
C18—C191.389 (4)C15—H15C0.9800
C18—C231.403 (4)C21—H210.9500
N2—C21.481 (4)C5—C61.523 (5)
N2—C31.496 (4)C5—H5A0.9900
N2—H2C0.9300C5—H5B0.9900
C23—C221.389 (5)C6—C81.531 (5)
C23—C241.501 (5)C16—H16A0.9800
O4—C241.316 (4)C16—H16B0.9800
O4—H40.8400C16—H16C0.9800
C11—C131.520 (5)C12—H12A0.9800
C11—C121.534 (5)C12—H12B0.9800
C11—H111.0000C12—H12C0.9800
C3—C51.527 (5)C8—H8A0.9800
C3—C41.530 (5)C8—H8B0.9800
C3—H31.0000C8—H8C0.9800
C1—C21.508 (5)O1W—H2W0.855 (11)
C1—H1A0.9900O1W—H1W0.860 (11)
C1—H1B0.9900Cl1—O51.367 (7)
C2—H2A0.9900Cl1—O71.390 (7)
C2—H2B0.9900Cl1—O61.418 (7)
C22—C211.379 (5)Cl1—O81.434 (6)
C22—H220.9500Cl1'—O6'1.383 (9)
C9—C101.492 (5)Cl1'—O8'1.416 (9)
C9—H9A0.9900Cl1'—O7'1.428 (9)
C9—H9B0.9900Cl1'—O5'1.446 (9)
N4—Ni1—N2105.40 (11)C10—C9—H9A109.7
N4—Ni1—N191.66 (10)N3—C9—H9B109.7
N2—Ni1—N184.67 (11)C10—C9—H9B109.7
N4—Ni1—N385.73 (11)H9A—C9—H9B108.2
N2—Ni1—N391.06 (11)C11—C13—C14119.2 (3)
N1—Ni1—N3174.23 (11)C11—C13—H13A107.5
N4—Ni1—O292.84 (10)C14—C13—H13A107.5
N2—Ni1—O2161.23 (10)C11—C13—H13B107.5
N1—Ni1—O299.45 (10)C14—C13—H13B107.5
N3—Ni1—O285.83 (10)H13A—C13—H13B107.0
N4—Ni1—O1153.72 (10)C18—C19—C20120.3 (3)
N2—Ni1—O1100.86 (10)C18—C19—H19119.8
N1—Ni1—O189.79 (10)C20—C19—H19119.8
N3—Ni1—O194.84 (10)N1—C14—C15107.2 (3)
O2—Ni1—O161.07 (8)N1—C14—C16111.4 (3)
N4—Ni1—C17123.46 (11)C15—C14—C16108.1 (3)
N2—Ni1—C17130.81 (11)N1—C14—C13110.4 (3)
N1—Ni1—C1798.26 (10)C15—C14—C13111.4 (3)
N3—Ni1—C1787.46 (10)C16—C14—C13108.4 (3)
O2—Ni1—C1730.65 (9)C3—C4—H4A109.5
O1—Ni1—C1730.68 (9)C3—C4—H4B109.5
C17—O1—Ni187.86 (18)H4A—C4—H4B109.5
C17—O2—Ni189.74 (19)C3—C4—H4C109.5
C1—N1—C14113.5 (3)H4A—C4—H4C109.5
C1—N1—Ni1104.9 (2)H4B—C4—H4C109.5
C14—N1—Ni1120.7 (2)C6—C7—H7A109.5
C1—N1—H1C105.5C6—C7—H7B109.5
C14—N1—H1C105.5H7A—C7—H7B109.5
Ni1—N1—H1C105.5C6—C7—H7C109.5
C9—N3—C6114.1 (3)H7A—C7—H7C109.5
C9—N3—Ni1103.5 (2)H7B—C7—H7C109.5
C6—N3—Ni1121.1 (2)C21—C20—C19120.1 (3)
C9—N3—H3A105.7C21—C20—H20120.0
C6—N3—H3A105.7C19—C20—H20120.0
Ni1—N3—H3A105.7N4—C10—C9110.2 (3)
C10—N4—C11113.4 (3)N4—C10—H10A109.6
C10—N4—Ni1103.3 (2)C9—C10—H10A109.6
C11—N4—Ni1114.7 (2)N4—C10—H10B109.6
C10—N4—H4D108.4C9—C10—H10B109.6
C11—N4—H4D108.4H10A—C10—H10B108.1
Ni1—N4—H4D108.4C14—C15—H15A109.5
O2—C17—O1120.3 (3)C14—C15—H15B109.5
O2—C17—C18119.1 (3)H15A—C15—H15B109.5
O1—C17—C18120.6 (3)C14—C15—H15C109.5
O2—C17—Ni159.61 (16)H15A—C15—H15C109.5
O1—C17—Ni161.46 (16)H15B—C15—H15C109.5
C18—C17—Ni1171.0 (2)C20—C21—C22120.2 (3)
C19—C18—C23119.3 (3)C20—C21—H21119.9
C19—C18—C17119.3 (3)C22—C21—H21119.9
C23—C18—C17121.3 (3)C6—C5—C3118.4 (3)
C2—N2—C3112.0 (3)C6—C5—H5A107.7
C2—N2—Ni1105.1 (2)C3—C5—H5A107.7
C3—N2—Ni1115.8 (2)C6—C5—H5B107.7
C2—N2—H2C107.9C3—C5—H5B107.7
C3—N2—H2C107.9H5A—C5—H5B107.1
Ni1—N2—H2C107.9N3—C6—C5110.2 (3)
C22—C23—C18119.6 (3)N3—C6—C7107.5 (3)
C22—C23—C24118.4 (3)C5—C6—C7111.5 (3)
C18—C23—C24121.8 (3)N3—C6—C8110.7 (3)
C24—O4—H4109.5C5—C6—C8108.9 (3)
N4—C11—C13110.2 (3)C7—C6—C8108.0 (3)
N4—C11—C12112.0 (3)C14—C16—H16A109.5
C13—C11—C12110.2 (3)C14—C16—H16B109.5
N4—C11—H11108.1H16A—C16—H16B109.5
C13—C11—H11108.1C14—C16—H16C109.5
C12—C11—H11108.1H16A—C16—H16C109.5
O3—C24—O4124.3 (3)H16B—C16—H16C109.5
O3—C24—C23124.2 (3)C11—C12—H12A109.5
O4—C24—C23111.3 (3)C11—C12—H12B109.5
N2—C3—C5109.8 (3)H12A—C12—H12B109.5
N2—C3—C4112.5 (3)C11—C12—H12C109.5
C5—C3—C4109.8 (3)H12A—C12—H12C109.5
N2—C3—H3108.2H12B—C12—H12C109.5
C5—C3—H3108.2C6—C8—H8A109.5
C4—C3—H3108.2C6—C8—H8B109.5
N1—C1—C2109.1 (3)H8A—C8—H8B109.5
N1—C1—H1A109.9C6—C8—H8C109.5
C2—C1—H1A109.9H8A—C8—H8C109.5
N1—C1—H1B109.9H8B—C8—H8C109.5
C2—C1—H1B109.9H2W—O1W—H1W108.1 (17)
H1A—C1—H1B108.3O5—Cl1—O7115.5 (8)
N2—C2—C1109.4 (3)O5—Cl1—O6113.2 (8)
N2—C2—H2A109.8O7—Cl1—O694.8 (6)
C1—C2—H2A109.8O5—Cl1—O8114.8 (7)
N2—C2—H2B109.8O7—Cl1—O8104.5 (5)
C1—C2—H2B109.8O6—Cl1—O8112.1 (6)
H2A—C2—H2B108.2O6'—Cl1'—O8'137.0 (11)
C21—C22—C23120.5 (3)O6'—Cl1'—O7'104.5 (10)
C21—C22—H22119.7O8'—Cl1'—O7'99.6 (9)
C23—C22—H22119.7O6'—Cl1'—O5'98.4 (9)
N3—C9—C10109.7 (3)O8'—Cl1'—O5'106.4 (9)
N3—C9—H9A109.7O7'—Cl1'—O5'109.5 (9)
N4—Ni1—O1—C1713.4 (3)O1—C17—C18—C23−147.6 (3)
N2—Ni1—O1—C17−168.73 (18)Ni1—C17—C18—C23−46.7 (16)
N1—Ni1—O1—C17106.74 (19)N4—Ni1—N2—C2107.1 (2)
N3—Ni1—O1—C17−76.71 (19)N1—Ni1—N2—C216.9 (2)
O2—Ni1—O1—C175.81 (17)N3—Ni1—N2—C2−167.0 (2)
N4—Ni1—O2—C17177.56 (18)O2—Ni1—N2—C2−86.9 (4)
N2—Ni1—O2—C1711.1 (4)O1—Ni1—N2—C2−71.9 (2)
N1—Ni1—O2—C17−90.29 (19)C17—Ni1—N2—C2−79.5 (3)
N3—Ni1—O2—C1792.06 (19)N4—Ni1—N2—C3−128.8 (2)
O1—Ni1—O2—C17−5.81 (17)N1—Ni1—N2—C3141.0 (2)
N4—Ni1—N1—C1−92.5 (2)N3—Ni1—N2—C3−42.9 (2)
N2—Ni1—N1—C112.8 (2)O2—Ni1—N2—C337.2 (4)
N3—Ni1—N1—C1−29.6 (12)O1—Ni1—N2—C352.2 (2)
O2—Ni1—N1—C1174.4 (2)C17—Ni1—N2—C344.6 (3)
O1—Ni1—N1—C1113.8 (2)C19—C18—C23—C221.2 (5)
C17—Ni1—N1—C1143.4 (2)C17—C18—C23—C22−174.2 (3)
N4—Ni1—N1—C1437.3 (2)C19—C18—C23—C24−174.3 (3)
N2—Ni1—N1—C14142.6 (2)C17—C18—C23—C2410.3 (5)
N3—Ni1—N1—C14100.2 (11)C10—N4—C11—C13−177.4 (3)
O2—Ni1—N1—C14−55.9 (2)Ni1—N4—C11—C1364.2 (3)
O1—Ni1—N1—C14−116.5 (2)C10—N4—C11—C12−54.3 (4)
C17—Ni1—N1—C14−86.9 (2)Ni1—N4—C11—C12−172.7 (2)
N4—Ni1—N3—C912.3 (2)C22—C23—C24—O3−126.8 (4)
N2—Ni1—N3—C9−93.1 (2)C18—C23—C24—O348.7 (5)
N1—Ni1—N3—C9−50.9 (11)C22—C23—C24—O448.2 (4)
O2—Ni1—N3—C9105.5 (2)C18—C23—C24—O4−136.3 (3)
O1—Ni1—N3—C9165.9 (2)C2—N2—C3—C5−175.8 (3)
C17—Ni1—N3—C9136.1 (2)Ni1—N2—C3—C563.8 (3)
N4—Ni1—N3—C6141.7 (3)C2—N2—C3—C4−53.1 (4)
N2—Ni1—N3—C636.3 (3)Ni1—N2—C3—C4−173.6 (3)
N1—Ni1—N3—C678.5 (11)C14—N1—C1—C2−174.3 (3)
O2—Ni1—N3—C6−125.2 (2)Ni1—N1—C1—C2−40.4 (3)
O1—Ni1—N3—C6−64.7 (2)C3—N2—C2—C1−170.7 (3)
C17—Ni1—N3—C6−94.5 (3)Ni1—N2—C2—C1−44.2 (3)
N2—Ni1—N4—C10107.1 (2)N1—C1—C2—N259.3 (4)
N1—Ni1—N4—C10−167.9 (2)C18—C23—C22—C21−1.7 (5)
N3—Ni1—N4—C1017.2 (2)C24—C23—C22—C21174.0 (3)
O2—Ni1—N4—C10−68.4 (2)C6—N3—C9—C10−173.9 (3)
O1—Ni1—N4—C10−75.1 (3)Ni1—N3—C9—C10−40.4 (3)
C17—Ni1—N4—C10−66.9 (2)N4—C11—C13—C14−74.1 (4)
N2—Ni1—N4—C11−128.9 (2)C12—C11—C13—C14161.7 (3)
N1—Ni1—N4—C11−44.0 (2)C23—C18—C19—C200.3 (5)
N3—Ni1—N4—C11141.1 (2)C17—C18—C19—C20175.7 (3)
O2—Ni1—N4—C1155.5 (2)C1—N1—C14—C15−159.6 (3)
O1—Ni1—N4—C1148.9 (3)Ni1—N1—C14—C1574.6 (3)
C17—Ni1—N4—C1157.0 (2)C1—N1—C14—C16−41.5 (4)
Ni1—O2—C17—O110.2 (3)Ni1—N1—C14—C16−167.3 (2)
Ni1—O2—C17—C18−169.7 (2)C1—N1—C14—C1379.0 (3)
Ni1—O1—C17—O2−10.0 (3)Ni1—N1—C14—C13−46.9 (3)
Ni1—O1—C17—C18169.9 (3)C11—C13—C14—N162.9 (4)
N4—Ni1—C17—O2−2.9 (2)C11—C13—C14—C15−56.1 (4)
N2—Ni1—C17—O2−175.31 (17)C11—C13—C14—C16−174.9 (3)
N1—Ni1—C17—O294.60 (18)C18—C19—C20—C21−1.3 (6)
N3—Ni1—C17—O2−86.11 (18)C11—N4—C10—C9−169.9 (3)
O1—Ni1—C17—O2170.0 (3)Ni1—N4—C10—C9−45.1 (3)
N4—Ni1—C17—O1−172.92 (16)N3—C9—C10—N461.0 (4)
N2—Ni1—C17—O114.7 (2)C19—C20—C21—C220.7 (6)
N1—Ni1—C17—O1−75.39 (18)C23—C22—C21—C200.8 (6)
N3—Ni1—C17—O1103.90 (18)N2—C3—C5—C6−74.9 (4)
O2—Ni1—C17—O1−170.0 (3)C4—C3—C5—C6160.9 (4)
N4—Ni1—C17—C1881.2 (15)C9—N3—C6—C576.9 (4)
N2—Ni1—C17—C18−91.2 (14)Ni1—N3—C6—C5−47.7 (4)
N1—Ni1—C17—C18179 (100)C9—N3—C6—C7−161.4 (3)
N3—Ni1—C17—C18−2.0 (14)Ni1—N3—C6—C774.1 (3)
O2—Ni1—C17—C1884.1 (14)C9—N3—C6—C8−43.6 (4)
O1—Ni1—C17—C18−105.9 (15)Ni1—N3—C6—C8−168.2 (3)
O2—C17—C18—C19−143.1 (3)C3—C5—C6—N364.5 (4)
O1—C17—C18—C1937.1 (4)C3—C5—C6—C7−54.8 (4)
Ni1—C17—C18—C19138.0 (13)C3—C5—C6—C8−173.9 (3)
O2—C17—C18—C2332.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1C···O5i0.932.293.094 (9)144
N2—H2C···O6'ii0.932.032.952 (10)173
O4—H4···O1W0.841.762.572 (4)162
O1W—H2W···O80.86 (1)2.13 (3)2.827 (5)138 (4)
O1W—H1W···O1iii0.86 (1)1.89 (2)2.734 (3)166 (4)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y, −z; (iii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2586).

References

  • Bruker (1999). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. T. (2004). Cryst. Growth Des.4, 813–822.
  • Curtis, N. F. (1965). J. Chem. Soc. A, pp. 924–931.
  • Gao, E. Q., Zhao, Q. H., Tang, J. K., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2002). J. Coord. Chem.55, 205–213.
  • Khatua, S., Stoeckli-Evans, H., Harada, T., Kuroda, R. & Bhattacharjee, M. (2006). Inorg. Chem.45, 9619–9621. [PubMed]
  • Lonnon, D. G., Colbran, S. B. & Craig, D. C. (2006). Eur. J. Inorg. Chem. pp. 1190–1197.
  • Ou, G.-C., Zhang, M. & Yuan, X.-Y. (2008). Acta Cryst. E64, m1010. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tait, A. M. & Busch, D. H. (1976). Inorg. Synth.18, 4–7.
  • Telfer, S. G. & Kuroda, R. (2005). Chem. Eur. J.11, 57–68. [PubMed]
  • Zeigerson, E., Bar, I., Bernstein, J., Kirschenbaum, L. J. & Meverstein, D. (1982). Inorg. Chem.21, 73–80.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography