PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1478.
Published online 2009 June 6. doi:  10.1107/S1600536809020236
PMCID: PMC2969196

Phenyl N-(1,3-thia­zol-2-yl)carbamate

Abstract

In the title compound, C10H8N2O2S, the planes of the aromatic rings are oriented at a dihedral angle of 66.69 (3)°. In the crystal structure, inter­molecular N—H(...)N and C—H(...)O inter­actions link the mol­ecules into a two-dimensional network, forming R 2 2(8) ring motifs. π–π contacts between the thia­zole rings [centroid–centroid distance = 3.535 (1) Å] may further stabilize the structure. A weak C—H(...)π inter­action is also found.

Related literature

For a related structure, see: Araujo et al. (2006 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For ring-motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1478-scheme1.jpg

Experimental

Crystal data

  • C10H8N2O2S
  • M r = 220.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1478-efi1.jpg
  • a = 5.6430 (11) Å
  • b = 7.3910 (15) Å
  • c = 25.134 (5) Å
  • β = 91.21 (3)°
  • V = 1048.0 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 294 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.918, T max = 0.972
  • 2084 measured reflections
  • 1880 independent reflections
  • 1346 reflections with I > 2σ(I)
  • R int = 0.027
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.160
  • S = 1.00
  • 1880 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020236/hk2701sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020236/hk2701Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Some derivatives of phenol are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (S/N2/C8-C10) are, of course, planar and they are oriented at a dihedral angle of 66.69 (3)°. Atoms O1, O2, N1, C4, C7, H1A, H9A and H10B are 0.118 (3), -0.063 (3), 0.028 (3), 0.172 (3), 0.023 (3), 0.051 (3), 0.002 (3) and -0.002 (3) Å away from the plane of ring B, respectively.

In the crystal structure, intermolecular N-H···N and C-H···O interactions (Table 1) link the molecules into a two-dimensional network forming R22(8) ring motifs (Bernstein et al., 1995) (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contact between the thiazole rings, Cg2—Cg2i, [symmetry code: (i) 1 - x, -y, -z, where Cg2 is centroid of the ring B (S/N2/C8-C10)] may further stabilize the structure, with centroid-centroid distance of 3.535 (1) Å. There also exists a weak C—H···π interaction (Table 1).

Experimental

For the preparation of the title compound, phenyl chloroformate (1.0 ml) was added slowly to a cold solution of thiazol-2-amine (1.0 g) and triethylamine (0.8 ml) in methylene chloride (10 ml) at 273 K. The mixture was then warmed and stirred for 1 h at room temperature. Then, it was washed with water (20 ml), dried and concentrated to give the title compound (yield; 1.3 g) (Araujo et al., 2006). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C10H8N2O2SF(000) = 456
Mr = 220.24Dx = 1.396 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 5.6430 (11) Åθ = 9–13°
b = 7.3910 (15) ŵ = 0.29 mm1
c = 25.134 (5) ÅT = 294 K
β = 91.21 (3)°Block, colorless
V = 1048.0 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1346 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
graphiteθmax = 25.3°, θmin = 1.6°
ω/2θ scansh = 0→6
Absorption correction: ψ scan (North et al., 1968)k = 0→8
Tmin = 0.918, Tmax = 0.972l = −30→30
2084 measured reflections3 standard reflections every 120 min
1880 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.07P)2 + 1.2P] where P = (Fo2 + 2Fc2)/3
1880 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.50888 (16)0.91653 (14)0.09893 (4)0.0578 (3)
O1−0.0749 (4)1.3216 (4)0.10691 (9)0.0584 (7)
O20.2490 (4)1.1925 (4)0.14685 (10)0.0604 (7)
N10.0988 (5)1.0912 (4)0.06773 (11)0.0522 (8)
H1A−0.01561.10500.04490.063*
N20.2450 (5)0.8574 (4)0.01638 (11)0.0535 (8)
C1−0.1494 (7)1.7169 (6)0.22167 (16)0.0653 (11)
H1B−0.16901.80720.24700.078*
C2−0.3070 (7)1.5775 (6)0.21820 (16)0.0700 (12)
H2B−0.43361.57280.24130.084*
C3−0.2801 (6)1.4432 (5)0.18072 (15)0.0583 (10)
H3A−0.38801.34840.17810.070*
C4−0.0921 (6)1.4522 (5)0.14755 (13)0.0476 (8)
C50.0675 (7)1.5907 (5)0.15058 (15)0.0592 (10)
H5A0.19451.59430.12760.071*
C60.0395 (8)1.7244 (6)0.18762 (16)0.0666 (11)
H6A0.14701.81960.18990.080*
C70.1061 (6)1.2010 (5)0.11072 (14)0.0494 (9)
C80.2638 (6)0.9587 (5)0.05834 (13)0.0446 (8)
C90.4328 (7)0.7386 (5)0.01506 (16)0.0617 (10)
H9A0.44940.6552−0.01230.074*
C100.5867 (7)0.7498 (6)0.05473 (17)0.0651 (11)
H10B0.72060.67720.05850.078*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0439 (5)0.0727 (7)0.0563 (6)−0.0038 (5)−0.0113 (4)0.0105 (5)
O10.0530 (14)0.0639 (17)0.0574 (15)0.0055 (13)−0.0160 (12)−0.0165 (13)
O20.0554 (15)0.0714 (18)0.0536 (15)−0.0004 (13)−0.0156 (12)−0.0085 (13)
N10.0431 (15)0.0635 (19)0.0493 (16)0.0000 (15)−0.0130 (13)−0.0135 (15)
N20.0532 (17)0.0526 (17)0.0542 (17)0.0043 (15)−0.0076 (14)−0.0044 (15)
C10.066 (3)0.072 (3)0.058 (2)0.010 (2)−0.0082 (19)−0.014 (2)
C20.053 (2)0.094 (3)0.063 (2)0.003 (2)0.0069 (19)−0.007 (2)
C30.0443 (19)0.067 (3)0.064 (2)−0.0096 (18)−0.0019 (17)−0.002 (2)
C40.0482 (19)0.049 (2)0.0453 (19)−0.0013 (16)−0.0090 (15)−0.0020 (16)
C50.057 (2)0.065 (3)0.055 (2)−0.011 (2)0.0101 (17)−0.0055 (19)
C60.072 (3)0.062 (2)0.066 (3)−0.016 (2)−0.003 (2)−0.009 (2)
C70.0454 (19)0.052 (2)0.051 (2)−0.0129 (17)−0.0057 (16)−0.0003 (17)
C80.0433 (18)0.0499 (19)0.0403 (18)−0.0062 (16)−0.0056 (14)0.0051 (15)
C90.068 (2)0.056 (2)0.062 (2)0.007 (2)−0.0016 (19)−0.0001 (19)
C100.054 (2)0.061 (2)0.080 (3)0.0108 (19)0.001 (2)0.017 (2)

Geometric parameters (Å, °)

S—C101.722 (4)C1—H1B0.9300
S—C81.729 (3)C2—C31.379 (5)
O1—C41.410 (4)C2—H2B0.9300
O1—C71.358 (4)C3—C41.364 (5)
O2—C71.203 (4)C3—H3A0.9300
N1—C71.351 (4)C4—C51.365 (5)
N1—C81.375 (4)C5—C61.369 (5)
N1—H1A0.8600C5—H5A0.9300
N2—C81.296 (4)C6—H6A0.9300
N2—C91.377 (5)C9—C101.311 (6)
C1—C21.363 (6)C9—H9A0.9300
C1—C61.382 (6)C10—H10B0.9300
C10—S—C887.71 (18)C4—C5—C6119.6 (4)
C7—O1—C4117.5 (2)C4—C5—H5A120.2
C7—N1—C8123.7 (3)C6—C5—H5A120.2
C7—N1—H1A118.1C5—C6—C1119.6 (4)
C8—N1—H1A118.1C5—C6—H6A120.2
C2—C1—C6120.1 (4)C1—C6—H6A120.2
C2—C1—H1B120.0O2—C7—N1125.5 (3)
C6—C1—H1B120.0O2—C7—O1125.4 (3)
C8—N2—C9109.8 (3)N1—C7—O1109.1 (3)
C1—C2—C3120.4 (4)N2—C8—N1120.5 (3)
C1—C2—H2B119.8N2—C8—S115.2 (3)
C3—C2—H2B119.8N1—C8—S124.3 (2)
C4—C3—C2118.7 (4)C10—C9—N2116.0 (4)
C4—C3—H3A120.6C10—C9—H9A122.0
C2—C3—H3A120.6N2—C9—H9A122.0
C3—C4—C5121.5 (3)C9—C10—S111.2 (3)
C3—C4—O1118.4 (3)C9—C10—H10B124.4
C5—C4—O1119.9 (3)S—C10—H10B124.4
C6—C1—C2—C3−0.2 (6)C4—O1—C7—O22.5 (5)
C1—C2—C3—C40.5 (6)C4—O1—C7—N1−178.0 (3)
C2—C3—C4—C5−0.3 (6)C9—N2—C8—N1178.6 (3)
C2—C3—C4—O1−175.6 (3)C9—N2—C8—S−0.2 (4)
C7—O1—C4—C3−112.5 (4)C7—N1—C8—N2179.5 (3)
C7—O1—C4—C572.1 (4)C7—N1—C8—S−1.8 (5)
C3—C4—C5—C6−0.1 (6)C10—S—C8—N20.1 (3)
O1—C4—C5—C6175.2 (3)C10—S—C8—N1−178.6 (3)
C4—C5—C6—C10.3 (6)C8—N2—C9—C100.2 (5)
C2—C1—C6—C5−0.2 (6)N2—C9—C10—S−0.2 (5)
C8—N1—C7—O2−3.3 (6)C8—S—C10—C90.0 (3)
C8—N1—C7—O1177.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.012.864 (4)171
C3—H3A···O2ii0.932.463.335 (4)156
C5—H5A···Cg2iii0.932.983.736 (3)139

Symmetry codes: (i) −x, −y+2, −z; (ii) x−1, y, z; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2701).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Araujo, M., Eduarda, M. & Norberto, F. (2006). J. Chem. Res.10, 664–667.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography