PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o841.
Published online 2009 March 25. doi:  10.1107/S1600536809010009
PMCID: PMC2969105

(4S,5S)-2-(2-Bromo­phen­yl)-1,3-dioxolane-4,5-dicarboxamide

Abstract

The asymmetric unit of the title compound, C11H11BrN2O4, contains two crystallographically independent mol­ecules in which the bromo­phenyl rings are oriented at dihedral angles of 39.28 (3)°. The dioxolane rings adopt envelope conformations. Intra­molecular N—H(...)O hydrogen bonds result in the formation of four five-membered rings, having planar and envelope conformations. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds link mol­ecules into chains along the b axis, forming R 2 2(8) ring motifs.

Related literature

For the use of similar compounds in the synthesis of platinum based anti-tumour agents and in organic syntheses, see: Kim et al. (1994 [triangle]); Pandey et al. (1997 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For ring motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o841-scheme1.jpg

Experimental

Crystal data

  • C11H11BrN2O4
  • M r = 315.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o841-efi1.jpg
  • a = 9.4150 (19) Å
  • b = 14.458 (3) Å
  • c = 9.6170 (19) Å
  • β = 111.14 (3)°
  • V = 1221.0 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.38 mm−1
  • T = 294 K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.552, T max = 0.729
  • 4504 measured reflections
  • 4256 independent reflections
  • 2669 reflections with I > 2σ(I)
  • R int = 0.061
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063
  • wR(F 2) = 0.181
  • S = 1.00
  • 4256 reflections
  • 325 parameters
  • H-atom parameters constrained
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.82 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1758 Friedel pairs
  • Flack parameter: 0.00 (2)

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010009/hk2643sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010009/hk2643Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Antitumor platinum drug is one kind of the most effective anticancer agents currently available. (2S,3S)-Diethyl 2,3-O-alkyltartrate analogues are starting materials for the syntheses of platinum complexes with antitumor activity (Kim et al., 1994), and are also important intermediates in organic syntheses (Pandey et al., 1997). As part of our studies on the syntheses and characterizations of these compounds, we have synthesized the title compound and reported herein its crystal structure.

The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1), in which the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and A' (C12-C17) are, of course, planar and they are oriented at a dihedral angle of A/A' = 39.28 (3)°. Rings B (O1/O2/C7-C9) and B' (O5/O6/C18-C20) adopt envelope conformations with C7 and C18 atoms displaced by 0.503 (3) and -0.589 (3) Å from the planes of the other ring atoms, rspectively. The intramolecular N-H···O hydrogen bonds (Table 1) result in the formations of four five-membered rings: C (O1/N1/C9/C10/H1B), D (O2/N2/C8/C11/H2B) and C' (O5/N3/C19/C21/H3C), D' (O6/N4/C20/C22/H4C). Ring D is planar, while rings C, C' and D' have envelope conformations with atoms O1, O5 and O6 displaced by 0.223 (3), -0.530 (3) and -0.304 (3) Å, respectively, from the planes of the other ring atoms.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into chains along the b-axis, forming R22(8) ring motifs (Fig. 2) (Bernstein et al., 1995). in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, 2-bromobenzaldehyde (300 mg, 1.62 mmol), (2S,3S)-diethyltartrate (434 mg, 2.11 mmol) and cyclohexane (10 ml) were placed in a round-bottomed flask, and 4-methylbenzenesulfonic acid (30 mg) was added. The flask was fitted with a water-distributor. The mixture was heated under reflux for 3 h. The reaction mixture was cooled to room temperature, and then transferred into a separatory funnel, washed with water (200 ml) and extracted with acetate (200 ml). The organic phase was distilled under pressure, and the residual was dissolved in anhydrous ethanol (50 ml). Then, a current of dry ammonia was passed through the reaction mixture at room temperature for about 4 h. The reaction mixture was then added dropwise to a vigorously stirred water (600 ml). The resulting colorless precipitate was obtained by filtration and dried in vacuo (Kim et al., 1994). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution after two weeks.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93 and 0.98 Å for aromatic and methine H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C11H11BrN2O4F(000) = 632
Mr = 315.12Dx = 1.714 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 9.4150 (19) Åθ = 10–13°
b = 14.458 (3) ŵ = 3.38 mm1
c = 9.6170 (19) ÅT = 294 K
β = 111.14 (3)°Block, colorless
V = 1221.0 (5) Å30.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer2669 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
graphiteθmax = 26.0°, θmin = 2.3°
ω/2θ scansh = 0→11
Absorption correction: ψ scan (North et al., 1968)k = −10→17
Tmin = 0.552, Tmax = 0.729l = −11→11
4504 measured reflections3 standard reflections every 120 min
4256 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.181w = 1/[σ2(Fo2) + (0.1P)2 + 1.54P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4256 reflectionsΔρmax = 0.54 e Å3
325 parametersΔρmin = −0.82 e Å3
0 restraintsAbsolute structure: Flack (1983), 1758 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.00 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.02596 (15)0.99788 (7)0.97303 (14)0.0608 (5)
Br20.51991 (15)0.59675 (7)0.96846 (14)0.0584 (4)
O10.2071 (7)0.8476 (4)1.2310 (7)0.0342 (15)
O20.3547 (9)0.7557 (5)1.1503 (8)0.045 (2)
O30.5492 (8)0.9264 (5)1.5118 (7)0.0425 (17)
O40.5063 (11)0.6732 (6)1.5238 (9)0.072 (3)
O50.1786 (8)0.3598 (6)0.8478 (8)0.0402 (19)
O60.3262 (6)0.4292 (4)0.7424 (6)0.0289 (14)
O7−0.0743 (8)0.2608 (5)0.5162 (8)0.051 (2)
O8−0.0128 (9)0.5151 (6)0.4748 (10)0.077 (3)
N10.3494 (10)1.0032 (7)1.3501 (9)0.054 (2)
H1A0.38721.05691.37980.065*
H1B0.26180.99831.27980.065*
N20.3894 (12)0.6010 (7)1.3088 (9)0.065 (3)
H2A0.39360.54871.35270.078*
H2B0.34800.60461.21330.078*
N30.1299 (12)0.2007 (8)0.6938 (12)0.083 (4)
H3B0.11230.14610.65570.100*
H3C0.20750.21030.77370.100*
N40.2056 (10)0.5835 (6)0.5937 (10)0.058 (3)
H4B0.18040.63540.54750.070*
H4C0.29460.57680.66090.070*
C1−0.1253 (13)0.8539 (9)0.7843 (12)0.054 (3)
H1C−0.19730.89940.74060.065*
C2−0.1452 (15)0.7645 (9)0.7283 (14)0.063 (3)
H2C−0.23350.74900.64910.076*
C3−0.0347 (14)0.6989 (9)0.7897 (12)0.060 (3)
H3A−0.04770.63970.74920.072*
C40.0952 (12)0.7193 (8)0.9104 (12)0.045 (3)
H4A0.16850.67380.95010.055*
C50.1177 (10)0.8071 (7)0.9733 (10)0.032 (2)
C60.0023 (11)0.8736 (7)0.9049 (11)0.041 (2)
C70.2506 (12)0.8300 (7)1.1051 (11)0.042 (3)
H7A0.30170.88461.08460.051*
C80.4385 (13)0.7664 (7)1.3091 (12)0.043 (3)
H8A0.54060.79131.32840.051*
C90.3383 (11)0.8363 (7)1.3586 (10)0.033 (2)
H9A0.31100.80911.43890.040*
C100.4257 (11)0.9281 (7)1.4125 (10)0.035 (2)
C110.4458 (12)0.6747 (7)1.3868 (11)0.040 (2)
C120.6632 (12)0.4664 (8)1.1863 (12)0.047 (3)
H12A0.73770.51191.21950.057*
C130.6768 (12)0.3799 (8)1.2638 (11)0.047 (3)
H13A0.76290.36791.34750.056*
C140.5657 (12)0.3166 (9)1.2157 (12)0.050 (3)
H14A0.57210.26191.26870.060*
C150.4429 (12)0.3328 (7)1.0882 (11)0.042 (2)
H15A0.36870.28721.05420.051*
C160.4242 (11)0.4149 (7)1.0072 (10)0.038 (2)
C170.5378 (11)0.4786 (7)1.0634 (10)0.038 (2)
C180.2854 (10)0.4319 (7)0.8716 (10)0.035 (2)
H18A0.23920.49150.87890.042*
C190.0858 (10)0.3643 (7)0.6949 (11)0.033 (2)
H19A−0.00530.40070.68420.040*
C200.1849 (12)0.4189 (7)0.6234 (10)0.041 (3)
H20A0.19840.38240.54330.049*
C210.0373 (12)0.2699 (7)0.6293 (12)0.041 (3)
C220.1035 (12)0.5114 (7)0.5599 (10)0.039 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0828 (10)0.0392 (9)0.0483 (8)0.0150 (7)0.0090 (7)0.0055 (7)
Br20.0742 (9)0.0320 (8)0.0488 (8)−0.0102 (7)−0.0022 (7)0.0053 (7)
O10.041 (3)0.031 (4)0.028 (4)0.001 (3)0.009 (3)−0.002 (3)
O20.070 (5)0.033 (5)0.028 (4)0.010 (4)0.011 (4)−0.001 (3)
O30.061 (4)0.026 (4)0.031 (4)−0.005 (3)0.006 (3)0.001 (3)
O40.113 (7)0.032 (5)0.035 (4)0.013 (4)−0.016 (4)−0.006 (4)
O50.048 (4)0.043 (5)0.023 (4)−0.007 (4)0.005 (3)0.000 (3)
O60.034 (3)0.031 (4)0.014 (3)0.007 (3)−0.001 (2)0.000 (3)
O70.060 (4)0.034 (5)0.032 (4)−0.001 (3)−0.016 (3)−0.005 (3)
O80.073 (5)0.043 (6)0.068 (6)−0.003 (4)−0.031 (5)0.019 (4)
N10.063 (5)0.030 (5)0.045 (5)−0.002 (5)−0.010 (4)−0.011 (5)
N20.121 (8)0.030 (5)0.024 (5)−0.022 (6)0.001 (5)0.002 (5)
N30.091 (7)0.033 (6)0.071 (7)0.008 (6)−0.038 (6)−0.003 (6)
N40.054 (5)0.042 (7)0.056 (6)−0.003 (5)−0.007 (4)0.023 (5)
C10.060 (5)0.062 (6)0.035 (5)0.007 (5)0.012 (4)0.007 (5)
C20.071 (6)0.059 (6)0.046 (6)−0.016 (5)0.006 (5)0.006 (5)
C30.086 (6)0.048 (6)0.040 (5)−0.012 (5)0.015 (4)−0.010 (5)
C40.062 (5)0.032 (5)0.037 (5)−0.003 (4)0.012 (4)0.001 (4)
C50.034 (4)0.033 (5)0.029 (4)−0.007 (4)0.012 (3)0.006 (4)
C60.054 (5)0.038 (5)0.030 (5)0.006 (4)0.015 (4)0.008 (4)
C70.067 (7)0.018 (6)0.038 (6)0.004 (5)0.016 (5)0.001 (5)
C80.064 (7)0.015 (6)0.033 (6)0.001 (5)−0.002 (5)−0.003 (5)
C90.052 (6)0.027 (6)0.022 (5)0.004 (4)0.015 (4)0.007 (4)
C100.052 (6)0.033 (7)0.019 (5)0.004 (5)0.010 (4)0.002 (4)
C110.058 (6)0.024 (6)0.025 (5)0.007 (5)0.000 (4)−0.005 (4)
C120.053 (5)0.044 (6)0.040 (5)0.002 (4)0.009 (4)−0.003 (4)
C130.052 (5)0.049 (6)0.030 (5)0.008 (4)0.004 (4)0.001 (4)
C140.058 (5)0.050 (6)0.034 (5)0.004 (4)0.008 (4)0.007 (4)
C150.062 (5)0.025 (5)0.031 (5)0.001 (4)0.007 (4)−0.003 (4)
C160.058 (5)0.027 (5)0.023 (4)0.004 (4)0.009 (4)−0.003 (4)
C170.055 (5)0.021 (5)0.031 (5)0.003 (4)0.006 (4)−0.004 (4)
C180.049 (5)0.031 (6)0.022 (5)−0.006 (5)0.009 (4)−0.003 (4)
C190.033 (5)0.025 (6)0.036 (6)−0.005 (4)0.008 (4)−0.007 (5)
C200.071 (7)0.021 (6)0.024 (5)0.020 (5)0.009 (5)0.000 (4)
C210.048 (6)0.028 (6)0.038 (6)−0.001 (5)0.003 (5)0.007 (5)
C220.059 (6)0.030 (7)0.019 (5)0.003 (5)0.002 (4)0.005 (4)

Geometric parameters (Å, °)

Br1—C61.897 (11)C2—H2C0.9300
Br2—C171.915 (10)C3—C41.381 (15)
O1—C91.402 (11)C3—H3A0.9300
O1—C71.434 (11)C4—C51.389 (15)
O2—C71.414 (12)C4—H4A0.9300
O2—C81.453 (12)C5—C61.422 (13)
O3—C101.210 (11)C5—C71.462 (14)
O4—C111.232 (12)C7—H7A0.9800
O5—C181.409 (11)C8—C111.511 (14)
O5—C191.416 (11)C8—C91.568 (14)
O6—C201.416 (11)C8—H8A0.9800
O6—C181.427 (11)C9—C101.549 (14)
O7—C211.217 (11)C9—H9A0.9800
O8—C221.107 (11)C12—C171.348 (13)
N1—C101.321 (12)C12—C131.437 (16)
N1—H1A0.8600C12—H12A0.9300
N1—H1B0.8600C13—C141.341 (15)
N2—C111.301 (13)C13—H13A0.9300
N2—H2A0.8600C14—C151.369 (14)
N2—H2B0.8600C14—H14A0.9300
N3—C211.324 (13)C15—C161.395 (14)
N3—H3B0.8600C15—H15A0.9300
N3—H3C0.8600C16—C171.367 (14)
N4—C221.375 (13)C16—C181.497 (12)
N4—H4B0.8600C18—H18A0.9800
N4—H4C0.8600C19—C211.504 (14)
C1—C61.366 (14)C19—C201.559 (15)
C1—C21.386 (18)C19—H19A0.9800
C1—H1C0.9300C20—C221.552 (13)
C2—C31.374 (17)C20—H20A0.9800
C9—O1—C7106.8 (7)C10—C9—H9A109.8
C7—O2—C8107.2 (8)C8—C9—H9A109.8
C18—O5—C19105.7 (7)O3—C10—N1125.8 (9)
C20—O6—C18103.7 (7)O3—C10—C9119.4 (8)
C10—N1—H1A120.0N1—C10—C9114.6 (8)
C10—N1—H1B120.0O4—C11—N2122.5 (10)
H1A—N1—H1B120.0O4—C11—C8117.7 (9)
C11—N2—H2A120.0N2—C11—C8119.8 (9)
C11—N2—H2B120.0C17—C12—C13117.1 (10)
H2A—N2—H2B120.0C17—C12—H12A121.5
C21—N3—H3B120.0C13—C12—H12A121.5
C21—N3—H3C120.0C14—C13—C12120.2 (10)
H3B—N3—H3C120.0C14—C13—H13A119.9
C22—N4—H4B120.0C12—C13—H13A119.9
C22—N4—H4C120.0C13—C14—C15119.6 (11)
H4B—N4—H4C120.0C13—C14—H14A120.2
C6—C1—C2118.7 (12)C15—C14—H14A120.2
C6—C1—H1C120.7C14—C15—C16122.8 (11)
C2—C1—H1C120.7C14—C15—H15A118.6
C3—C2—C1120.1 (12)C16—C15—H15A118.6
C3—C2—H2C120.0C17—C16—C15115.4 (9)
C1—C2—H2C120.0C17—C16—C18123.1 (9)
C2—C3—C4121.2 (12)C15—C16—C18121.4 (9)
C2—C3—H3A119.4C12—C17—C16124.8 (10)
C4—C3—H3A119.4C12—C17—Br2115.7 (8)
C3—C4—C5120.7 (11)C16—C17—Br2119.4 (7)
C3—C4—H4A119.6O5—C18—O6103.9 (7)
C5—C4—H4A119.6O5—C18—C16111.5 (8)
C4—C5—C6116.5 (9)O6—C18—C16109.3 (8)
C4—C5—C7122.2 (9)O5—C18—H18A110.7
C6—C5—C7121.3 (9)O6—C18—H18A110.7
C1—C6—C5122.8 (11)C16—C18—H18A110.7
C1—C6—Br1116.7 (8)O5—C19—C21112.0 (9)
C5—C6—Br1120.4 (8)O5—C19—C20103.8 (7)
O2—C7—O1104.7 (8)C21—C19—C20114.5 (9)
O2—C7—C5112.1 (8)O5—C19—H19A108.8
O1—C7—C5110.9 (8)C21—C19—H19A108.8
O2—C7—H7A109.7C20—C19—H19A108.8
O1—C7—H7A109.7O6—C20—C22114.5 (8)
C5—C7—H7A109.7O6—C20—C19103.5 (7)
O2—C8—C11109.7 (8)C22—C20—C19108.8 (8)
O2—C8—C9103.3 (8)O6—C20—H20A110.0
C11—C8—C9109.9 (9)C22—C20—H20A110.0
O2—C8—H8A111.2C19—C20—H20A110.0
C11—C8—H8A111.2O7—C21—N3123.2 (10)
C9—C8—H8A111.2O7—C21—C19120.4 (9)
O1—C9—C10112.7 (8)N3—C21—C19116.1 (9)
O1—C9—C8104.3 (7)O8—C22—N4124.0 (10)
C10—C9—C8110.4 (8)O8—C22—C20123.2 (10)
O1—C9—H9A109.8N4—C22—C20110.9 (8)
C6—C1—C2—C3−2.9 (18)C17—C12—C13—C14−1.8 (16)
C1—C2—C3—C42.1 (19)C12—C13—C14—C153.3 (17)
C2—C3—C4—C50.0 (19)C13—C14—C15—C16−2.5 (18)
C3—C4—C5—C6−1.2 (15)C14—C15—C16—C170.3 (16)
C3—C4—C5—C7177.3 (10)C14—C15—C16—C18−177.5 (10)
C2—C1—C6—C51.7 (16)C13—C12—C17—C16−0.5 (17)
C2—C1—C6—Br1178.3 (9)C13—C12—C17—Br2177.4 (8)
C4—C5—C6—C10.4 (15)C15—C16—C17—C121.2 (16)
C7—C5—C6—C1−178.2 (10)C18—C16—C17—C12179.0 (10)
C4—C5—C6—Br1−176.1 (8)C15—C16—C17—Br2−176.6 (7)
C7—C5—C6—Br15.3 (13)C18—C16—C17—Br21.2 (14)
C8—O2—C7—O1−33.6 (10)C19—O5—C18—O6−40.6 (9)
C8—O2—C7—C5−153.9 (9)C19—O5—C18—C16−158.2 (8)
C9—O1—C7—O238.4 (9)C20—O6—C18—O544.5 (8)
C9—O1—C7—C5159.5 (8)C20—O6—C18—C16163.6 (8)
C4—C5—C7—O24.6 (14)C17—C16—C18—O5−173.1 (9)
C6—C5—C7—O2−176.9 (8)C15—C16—C18—O54.5 (14)
C4—C5—C7—O1−111.9 (10)C17—C16—C18—O672.7 (12)
C6—C5—C7—O166.6 (11)C15—C16—C18—O6−109.7 (10)
C7—O2—C8—C11133.8 (9)C18—O5—C19—C21144.8 (9)
C7—O2—C8—C916.6 (10)C18—O5—C19—C2020.7 (10)
C7—O1—C9—C1092.9 (9)C18—O6—C20—C2288.1 (9)
C7—O1—C9—C8−26.9 (9)C18—O6—C20—C19−30.1 (9)
O2—C8—C9—O16.4 (10)O5—C19—C20—O66.1 (9)
C11—C8—C9—O1−110.6 (8)C21—C19—C20—O6−116.3 (8)
O2—C8—C9—C10−114.9 (9)O5—C19—C20—C22−116.0 (8)
C11—C8—C9—C10128.1 (9)C21—C19—C20—C22121.6 (9)
O1—C9—C10—O3−172.2 (8)O5—C19—C21—O7158.6 (10)
C8—C9—C10—O3−56.0 (11)C20—C19—C21—O7−83.5 (13)
O1—C9—C10—N112.7 (12)O5—C19—C21—N3−27.2 (14)
C8—C9—C10—N1128.9 (9)C20—C19—C21—N390.7 (13)
O2—C8—C11—O4−176.2 (9)O6—C20—C22—O8−173.5 (11)
C9—C8—C11—O4−63.3 (13)C19—C20—C22—O8−58.3 (14)
O2—C8—C11—N23.9 (15)O6—C20—C22—N421.5 (12)
C9—C8—C11—N2116.9 (11)C19—C20—C22—N4136.7 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1B···O10.862.252.657 (12)109
N2—H2B···O20.862.272.660 (12)107
N3—H3B···O8i0.862.283.123 (14)167
N3—H3C···O50.862.322.684 (14)106
N4—H4B···O7ii0.862.052.876 (11)160
N4—H4C···O60.862.262.672 (11)110

Symmetry codes: (i) −x, y−1/2, −z+1; (ii) −x, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2643).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Kim, D. K., Kim, G., Gam, J. S., Cho, Y. B., Kim, H. T., Tai, J. H., Kim, K. H., Hong, W. S. & Park, J. G. (1994). J. Med. Chem.37, 1471–1485. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Pandey, G., Hajra, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem.62, 5966–5973.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography