PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m444.
Published online 2009 March 25. doi:  10.1107/S1600536809010344
PMCID: PMC2969102

{6,6′-Dieth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato}zinc(II) monohydrate

Abstract

The mol­ecule of the title compound, [Zn(C20H22N2O4)]·H2O, deviates from planarity with a dihedral angle between the two benzene rings is 18.3 (1)°. The four-coordinate ZnII ion has a distorted square-planar coordination and is N2O2-chelated by the Schiff base ligand. The ZnII ion and solvent water mol­ecule are located on a twofold rotation axis. The structure displays inter­molecular O—H(...)O hydrogen bonding.

Related literature

For the chemical properties of Schiff bases, see: Lindoy et al. (1976 [triangle]). For N,N′-disalicylideneethyl­enediamine complexes, see: Correia et al. (2005 [triangle]); Cunningham et al. (2000 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m444-scheme1.jpg

Experimental

Crystal data

  • [Zn(C20H22N2O4)]·H2O
  • M r = 437.78
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m444-efi1.jpg
  • a = 12.6512 (16) Å
  • b = 19.986 (3) Å
  • c = 7.8708 (10) Å
  • V = 1990.1 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.27 mm−1
  • T = 273 K
  • 0.25 × 0.21 × 0.17 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.742, T max = 0.813
  • 9492 measured reflections
  • 1855 independent reflections
  • 1423 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.101
  • S = 1.04
  • 1855 reflections
  • 133 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: XP in SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809010344/pk2159sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010344/pk2159Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Zhejiang Provincial Natural Science Foundation (Y4080395).

supplementary crystallographic information

Comment

The schiff bases have been extensively studied as effective ligands for metal ions and used in the mechanism of many biochemical processes (Lindoy et al., 1976). N,N-disalicylideneethylenediamine type schiff bases ligands present versatile steric, electronic and lipophilic properties (Correia et al. 2005; Cunningham et al. 2000). We report here the synthesis and crystal structure of the title compound. The molecular structure is shown in Fig.1. The values of the geometric parameters in the structure are normal (Allen et al., 1987). The interplanar angles beween the the two phenyl group is 18.3 (1)°. The four-coordinate Zn gives plane coordination.

Experimental

A mixture of 6,6'-Diethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol (0.1 mmol) and zinc acetate (0.1 mmol) in absolute methanol (20 ml) was heated at 50 centidegree and stirred for 30 min, then filtered. The resulting clear orange solution was moved to a tube, some ethyl ether was added, and then after 14 days, block-shaped crystals of the title complex suitable for X-ray diffraction analysis were obtained(yield: about 40%).

Refinement

The H atoms were fixed geometrically and were treated as riding on their parent C atoms, with C–H distances in the range of 0.93–0.97Å and with Uiso(H) = 1.2Ueq(parent atom), or Uiso(H) = 1.5Ueq(Cmethyl). The coordinates of the water H atom were found in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
The independent molecules of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

[Zn(C20H22N2O4)]·H2OF(000) = 912
Mr = 437.78Dx = 1.461 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2488 reflections
a = 12.6512 (16) Åθ = 3.3–24.0°
b = 19.986 (3) ŵ = 1.27 mm1
c = 7.8708 (10) ÅT = 273 K
V = 1990.1 (4) Å3Needle, colourless
Z = 40.25 × 0.21 × 0.17 mm

Data collection

Bruker APEXII CCD area-detector diffractometer1855 independent reflections
Radiation source: fine-focus sealed tube1423 reflections with I > 2σ(I)
graphiteRint = 0.031
[var phi] and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −15→13
Tmin = 0.742, Tmax = 0.813k = −24→23
9492 measured reflectionsl = −9→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0592P)2 + 0.4077P] where P = (Fo2 + 2Fc2)/3
1855 reflections(Δ/σ)max = 0.034
133 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.50000.475277 (19)0.25000.04314 (18)
O10.40642 (12)0.40659 (8)0.1698 (2)0.0441 (4)
O20.31927 (13)0.29902 (8)0.0342 (2)0.0491 (4)
O30.50000.26838 (19)0.25000.0940 (13)
N10.40920 (19)0.54832 (10)0.1725 (3)0.0519 (6)
C10.2641 (2)0.47896 (14)0.0770 (3)0.0530 (7)
C20.31464 (18)0.41541 (12)0.0957 (3)0.0422 (6)
C30.26222 (19)0.35776 (13)0.0260 (3)0.0468 (6)
C40.1632 (2)0.36235 (17)−0.0434 (4)0.0619 (8)
H40.12940.3244−0.08490.074*
C50.1133 (2)0.4253 (2)−0.0514 (4)0.0800 (10)
H50.04530.4284−0.09570.096*
C60.1628 (3)0.48188 (19)0.0045 (4)0.0740 (10)
H60.12890.5230−0.00550.089*
C70.3159 (2)0.54153 (14)0.1154 (4)0.0588 (8)
H70.27740.58050.09670.071*
C80.2840 (2)0.24216 (14)−0.0638 (4)0.0590 (8)
H8A0.26830.2559−0.17920.071*
H8B0.22010.2238−0.01420.071*
C90.3688 (3)0.19045 (15)−0.0647 (4)0.0726 (9)
H9A0.43200.2090−0.11300.109*
H9B0.34630.1528−0.13120.109*
H9C0.38270.17620.04960.109*
C100.4568 (3)0.61556 (13)0.1843 (4)0.0651 (8)
H10A0.40300.64790.21520.078*
H10B0.48570.62830.07480.078*
H3A0.487 (4)0.2934 (18)0.172 (4)0.126 (18)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0450 (3)0.0357 (3)0.0487 (3)0.0000.00991 (18)0.000
O10.0357 (9)0.0407 (9)0.0558 (11)0.0034 (7)−0.0043 (8)0.0012 (8)
O20.0455 (10)0.0505 (10)0.0513 (10)−0.0085 (8)−0.0114 (8)0.0028 (8)
O30.096 (3)0.054 (2)0.132 (4)0.000−0.064 (3)0.000
N10.0604 (15)0.0394 (11)0.0558 (14)0.0128 (11)0.0222 (12)0.0062 (11)
C10.0456 (15)0.0639 (18)0.0496 (16)0.0188 (12)0.0072 (13)0.0064 (13)
C20.0342 (12)0.0563 (15)0.0361 (13)0.0052 (11)0.0062 (10)0.0073 (11)
C30.0378 (14)0.0650 (17)0.0376 (13)0.0001 (12)0.0031 (10)0.0109 (12)
C40.0378 (15)0.095 (2)0.0526 (17)−0.0027 (15)−0.0049 (12)0.0055 (16)
C50.0401 (17)0.126 (3)0.074 (2)0.0183 (19)−0.0085 (15)0.012 (2)
C60.054 (2)0.091 (2)0.077 (2)0.0321 (17)−0.0010 (15)0.011 (2)
C70.0645 (19)0.0545 (17)0.0575 (17)0.0282 (15)0.0164 (15)0.0095 (14)
C80.0666 (18)0.0623 (18)0.0481 (15)−0.0252 (15)−0.0096 (14)0.0051 (13)
C90.092 (2)0.0575 (18)0.068 (2)−0.0142 (17)−0.0122 (18)−0.0091 (15)
C100.090 (2)0.0338 (14)0.071 (2)0.0088 (13)0.0375 (16)0.0048 (13)

Geometric parameters (Å, °)

Zn1—O11.9195 (16)C4—C51.410 (5)
Zn1—O1i1.9195 (16)C4—H40.9300
Zn1—N1i1.955 (2)C5—C61.365 (5)
Zn1—N11.955 (2)C5—H50.9300
O1—C21.311 (3)C6—H60.9300
O2—C31.380 (3)C7—H70.9300
O2—C81.444 (3)C8—C91.489 (4)
O3—H3A0.807 (10)C8—H8A0.9700
N1—C71.270 (4)C8—H8B0.9700
N1—C101.476 (3)C9—H9A0.9600
C1—C61.404 (4)C9—H9B0.9600
C1—C21.429 (3)C9—H9C0.9600
C1—C71.444 (4)C10—C10i1.505 (7)
C2—C31.438 (3)C10—H10A0.9700
C3—C41.369 (4)C10—H10B0.9700
O1—Zn1—O1i88.69 (9)C4—C5—H5119.4
O1—Zn1—N1i177.35 (8)C5—C6—C1121.0 (3)
O1i—Zn1—N1i93.95 (9)C5—C6—H6119.5
O1—Zn1—N193.95 (9)C1—C6—H6119.5
O1i—Zn1—N1177.35 (8)N1—C7—C1126.1 (2)
N1i—Zn1—N183.40 (15)N1—C7—H7117.0
C2—O1—Zn1126.60 (15)C1—C7—H7117.0
C3—O2—C8118.9 (2)O2—C8—C9109.0 (2)
C7—N1—C10119.9 (2)O2—C8—H8A109.9
C7—N1—Zn1125.21 (19)C9—C8—H8A109.9
C10—N1—Zn1114.9 (2)O2—C8—H8B109.9
C6—C1—C2119.1 (3)C9—C8—H8B109.9
C6—C1—C7117.6 (3)H8A—C8—H8B108.3
C2—C1—C7123.0 (3)C8—C9—H9A109.5
O1—C2—C1124.1 (2)C8—C9—H9B109.5
O1—C2—C3118.0 (2)H9A—C9—H9B109.5
C1—C2—C3117.8 (2)C8—C9—H9C109.5
C4—C3—O2123.6 (3)H9A—C9—H9C109.5
C4—C3—C2121.3 (2)H9B—C9—H9C109.5
O2—C3—C2115.0 (2)N1—C10—C10i109.85 (18)
C3—C4—C5119.2 (3)N1—C10—H10A109.7
C3—C4—H4120.4C10i—C10—H10A109.7
C5—C4—H4120.4N1—C10—H10B109.7
C6—C5—C4121.3 (3)C10i—C10—H10B109.7
C6—C5—H5119.4H10A—C10—H10B108.2

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.81 (1)2.91 (5)3.071 (4)94 (3)

Symmetry codes: (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2159).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Correia, I., Pessoa, J. C., Duarte, M. T., da Piedade, M. F. M., Jackush, T., Kiss, T., Castro, M. M. C. A., Geraldes, C. F. G. C. & Avecilla F. (2005). Eur. J. Inorg. Chem pp. 732–744.
  • Cunningham, D., McArdle, P., Mitchell, M., Chonchubhair, N. N., Gara, M. O., Franceschi, F. & Floriani, C. (2000). Inorg. Chem 39, 1639–1649. [PubMed]
  • Lindoy, L. F., Lip, H. C., Power, L. F. & Rea, T. H. (1976). Inorg. Chem.15, 1724–1727.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography