PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): i29.
Published online 2009 March 19. doi:  10.1107/S1600536809009702
PMCID: PMC2969100

[Cu2(HF2)(H2O)8][AlF6]·2H2O

Abstract

The title compound, octaaqua­(hydrogendifluorido)­di­cop­per(II) hexa­fluoridoaluminate dihydrate, was obtained under hydro­thermal conditions. The structure is isotypic with that of the analogous FeIII compound, [Cu2(HF2)(H2O)8][FeF6]·2H2O. The coordination sphere of the CuII atom is formed by one F and three water O atoms at short distances < 2 Å and is augmented by two additional water O atoms at significantly longer distances, leading to a considerably distorted octa­hedral environment. By edge-sharing, these octa­hedra form dimeric [Cu2(HF2)(H2O)8]3+ units that are bonded to [AlF6]3− anions (An external file that holds a picture, illustration, etc.
Object name is e-65-00i29-efi1.jpg symmetry) and to crystal lattice water mol­ecules via hydrogen bonds. Besides F—H(...)F inter­actions between the dimeric cationic units, O—H(...)F and O—H(...)O hydrogen bonds (both in part bifurcated) are observed.

Related literature

For the structure of the isotypic FeIII analogue, see: Le Bail & Mercier (2009 [triangle]). For a natural compound in the Cu/Al/F/O/H system, Cu4Al3(OH)14F3(H2O)2 (mineral name khaidarkanite), see: Rastsvetaeva et al. (1997 [triangle]).

Experimental

Crystal data

  • [Cu2(HF2)(H2O)8][AlF6]·2H2O
  • M r = 487.23
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00i29-efi2.jpg
  • a = 6.6119 (3) Å
  • b = 7.3410 (3) Å
  • c = 8.3174 (3) Å
  • α = 107.336 (1)°
  • β = 106.715 (1)°
  • γ = 94.454 (1)°
  • V = 363.15 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 3.12 mm−1
  • T = 293 K
  • 0.18 × 0.14 × 0.06 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.52, T max = 0.80
  • 3899 measured reflections
  • 2013 independent reflections
  • 1952 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.072
  • S = 1.08
  • 2013 reflections
  • 130 parameters
  • 10 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.54 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ATOMS for Windows (Dowty, 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809009702/br2101sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009702/br2101Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The crystal structure (Fig. 1) of the title compound, [Cu2(HF2)(H2O)8][AlF6].2H2O), is isotypic with [Cu2(HF2)(H2O)8][FeF6].2H2O (Le Bail & Mercier, 2009). Except the Al—F distances (¯d = 1.810 Å versus 1.930 Å for the average Fe—F distance), all other interatomic distances, angles and the hydrogen bond geometry are very similar for the two structures. A detailed description of this structure has been given Le Bail & Mercier (2009).

There is one additional compound described in the Cu/Al/F/O/H system, viz the mineral khaidarkanite with formula Cu4Al3(OH)14F3(H2O)2 (Rastsvetaeva et al., 1997). The latter differs from the title compound as its structure contains distorted [Cu(OH)5(H2O)] octahedra, and [Al(OH)6] and [AlF4(H2O)2] octahedra as building units.

Experimental

AlF3 and CuSO4.5H2O (both Merck, p.a.) were reacted hydrothermally in a 2 M HF solution at 393 K for 4 d. Blue crystals of the title compound with mostly platy habit and up to 0.3 mm in length were obtained.

Refinement

The structure was solved using direct methods. For better comparison with the isotypic FeIII analogue (Le Bail & Mercier, 2009), the atomic coordinates of the latter were used for the final refinement cycles. All H atoms were located from difference Fourier maps. The water H atoms were restrained to have O—H distances of 0.85 Å. Their Uiso values were refined with one common parameter. The position of the H atom of the disordered HF group (set with a site occupation factor of 1/2) was fixed during refinement, but its Uiso value was refined independently.

Figures

Fig. 1.
The crystal structure of [Cu2(HF2)(H2O)8][AlF6](H2O)2 in polyhedral representation projected along [010]. Colour key: O atoms white, F atoms green, H atoms are grey, [CuO5F] octahedra are blue, [AlF6] octahedra are red. Displacement ellipsoids are given ...

Crystal data

[Cu2(HF2)(H2O)8][AlF6]·2H2OZ = 1
Mr = 487.23F(000) = 244
Triclinic, P1Dx = 2.228 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6119 (3) ÅCell parameters from 3443 reflections
b = 7.3410 (3) Åθ = 2.7–30.0°
c = 8.3174 (3) ŵ = 3.12 mm1
α = 107.336 (1)°T = 293 K
β = 106.715 (1)°Plate, blue
γ = 94.454 (1)°0.18 × 0.14 × 0.06 mm
V = 363.15 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer2013 independent reflections
Radiation source: fine-focus sealed tube1952 reflections with I > 2σ(I)
graphiteRint = 0.019
ω scansθmax = 30.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −9→9
Tmin = 0.52, Tmax = 0.80k = −10→10
3899 measured reflectionsl = −11→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072w = 1/[σ2(Fo2) + (0.0482P)2 + 0.1517P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2013 reflectionsΔρmax = 0.44 e Å3
130 parametersΔρmin = −0.54 e Å3
10 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.059 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu0.60564 (3)0.55637 (3)0.23399 (2)0.01836 (10)
Al0.00000.00000.00000.01611 (15)
F10.21626 (18)−0.02274 (17)−0.09157 (16)0.0272 (2)
F20.19296 (18)0.12317 (17)0.21936 (15)0.0282 (2)
F3−0.02395 (19)0.23071 (16)−0.03724 (18)0.0278 (2)
F40.4323 (2)0.5863 (2)0.38450 (18)0.0354 (3)
O10.5678 (2)0.2833 (2)0.2103 (2)0.0289 (3)
O20.6023 (3)0.8243 (2)0.2410 (2)0.0266 (3)
O30.7505 (2)0.5080 (2)0.0522 (2)0.0248 (3)
O40.9127 (2)0.6621 (2)0.4883 (2)0.0278 (3)
O50.2346 (3)0.8900 (2)0.4430 (2)0.0296 (3)
H110.636 (6)0.198 (5)0.160 (5)0.055 (3)*
H120.456 (5)0.233 (5)0.218 (5)0.055 (3)*
H210.668 (6)0.881 (5)0.196 (5)0.055 (3)*
H220.653 (6)0.910 (5)0.340 (4)0.055 (3)*
H310.833 (6)0.586 (5)0.050 (5)0.055 (3)*
H320.811 (6)0.421 (5)0.027 (5)0.055 (3)*
H410.885 (6)0.716 (5)0.583 (4)0.055 (3)*
H421.009 (5)0.644 (5)0.483 (5)0.055 (3)*
H510.213 (6)0.925 (5)0.365 (4)0.055 (3)*
H520.344 (6)0.796 (5)0.435 (5)0.055 (3)*
H60.47220.52260.46290.026 (12)*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.02240 (14)0.01519 (13)0.02078 (14)0.00360 (8)0.01130 (9)0.00657 (9)
Al0.0176 (3)0.0141 (3)0.0194 (3)0.0027 (2)0.0093 (2)0.0063 (2)
F10.0279 (5)0.0262 (5)0.0377 (6)0.0082 (4)0.0226 (5)0.0129 (5)
F20.0273 (5)0.0301 (6)0.0225 (5)−0.0007 (4)0.0070 (4)0.0049 (4)
F30.0304 (5)0.0188 (5)0.0424 (6)0.0066 (4)0.0175 (5)0.0161 (5)
F40.0481 (7)0.0379 (7)0.0378 (7)0.0205 (6)0.0281 (6)0.0211 (5)
O10.0280 (7)0.0161 (6)0.0471 (8)0.0040 (5)0.0213 (6)0.0084 (6)
O20.0394 (7)0.0176 (6)0.0273 (6)0.0042 (5)0.0164 (6)0.0091 (5)
O30.0284 (6)0.0189 (6)0.0333 (7)0.0049 (5)0.0200 (6)0.0079 (5)
O40.0262 (6)0.0276 (7)0.0280 (6)0.0050 (5)0.0086 (5)0.0073 (5)
O50.0379 (7)0.0279 (7)0.0266 (6)0.0090 (6)0.0134 (6)0.0108 (5)

Geometric parameters (Å, °)

Cu—F41.9049 (12)Al—F11.8001 (10)
Cu—O11.9441 (14)Al—F1ii1.8001 (10)
Cu—O21.9522 (14)Al—F2ii1.8091 (11)
Cu—O31.9739 (13)Al—F21.8091 (11)
Cu—O42.3463 (15)Al—F3ii1.8209 (11)
Cu—O3i2.7139 (16)Al—F31.8209 (11)
Cu—Cui3.5440 (4)F4—F4iii2.596 (3)
F4—Cu—O186.72 (6)F4iii—F4—O175.78 (7)
F4—Cu—O290.07 (6)Cu—F4—O5120.66 (7)
O1—Cu—O2172.31 (6)F4iii—F4—O5123.74 (8)
F4—Cu—O3172.54 (6)O1—F4—O5159.76 (8)
O1—Cu—O391.01 (6)Cu—F4—O245.67 (4)
O2—Cu—O391.29 (6)F4iii—F4—O2138.16 (10)
F4—Cu—O489.18 (6)O1—F4—O292.70 (6)
O1—Cu—O497.22 (6)O5—F4—O275.99 (6)
O2—Cu—O489.72 (6)H11—O1—H12113 (4)
O3—Cu—O498.16 (6)Cu—O2—Cui65.57 (4)
F4—Cu—O3i89.91 (5)F4—O2—Cui93.18 (5)
O1—Cu—O3i91.35 (6)Cu—O2—H21126 (3)
O2—Cu—O3i81.64 (6)F4—O2—H21169 (3)
O3—Cu—O3i83.04 (5)Cui—O2—H2183 (3)
O4—Cu—O3i171.31 (5)Cu—O2—H22117 (3)
F1—Al—F1ii180.00 (8)F4—O2—H2291 (3)
F1—Al—F2ii90.44 (5)Cui—O2—H22176 (3)
F1ii—Al—F2ii89.56 (5)H21—O2—H2292 (4)
F1—Al—F289.56 (5)Cu—O3—Cui96.96 (5)
F1ii—Al—F290.44 (5)Cu—O3—H31123 (3)
F2ii—Al—F2180.0Cui—O3—H31107 (3)
F1—Al—F3ii89.97 (5)Cu—O3—H32125 (3)
F1ii—Al—F3ii90.03 (5)Cui—O3—H32106 (3)
F2ii—Al—F3ii90.57 (6)H31—O3—H3297 (4)
F2—Al—F3ii89.43 (6)Cu—O4—H41113 (2)
F1—Al—F390.03 (5)F4—O4—H4175 (3)
F1ii—Al—F389.97 (5)Cu—O4—H42121 (3)
F2ii—Al—F389.43 (6)F4—O4—H42156 (3)
F2—Al—F390.57 (6)H41—O4—H42126 (4)
F3ii—Al—F3180.00 (8)F4—O5—H51110 (3)
Cu—F4—F4iii109.26 (8)H51—O5—H52109 (3)
Cu—F4—O147.26 (4)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y, −z; (iii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H11···F1iv0.87 (3)1.74 (3)2.6042 (17)171 (4)
O1—H12···F20.83 (3)1.86 (3)2.6899 (18)176 (4)
O2—H21···F1i0.81 (3)1.79 (3)2.6020 (18)172 (4)
O2—H22···O5v0.83 (3)1.86 (3)2.684 (2)178 (4)
O3—H31···F3i0.77 (3)1.82 (3)2.5877 (18)178 (4)
O3—H32···F3vi0.79 (3)1.89 (3)2.6700 (17)174 (4)
O4—H41···F2iii0.85 (3)1.95 (3)2.7840 (19)169 (4)
O4—H42···O4vii0.67 (3)2.41 (4)2.758 (3)115 (4)
O4—H42···O5vi0.67 (3)2.41 (4)2.784 (2)117 (4)
O5—H51···F2viii0.75 (3)2.14 (3)2.8538 (19)159 (4)
O5—H51···F3ix0.75 (3)2.50 (3)3.072 (2)135 (4)
O5—H52···F41.04 (3)1.67 (3)2.6620 (19)158 (3)
F4—H6···F4iii0.9031 (13)1.6945 (13)2.596 (3)175.27 (5)

Symmetry codes: (iv) −x+1, −y, −z; (i) −x+1, −y+1, −z; (v) −x+1, −y+2, −z+1; (vi) x+1, y, z; (iii) −x+1, −y+1, −z+1; (vii) −x+2, −y+1, −z+1; (viii) x, y+1, z; (ix) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2101).

References

  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dowty, E. (2006). ATOMS for Windows Shape Software, Kingsport, Tennessee, USA.
  • Le Bail, A. & Mercier, A.-M. (2009). Acta Cryst. E65, i23–i24. [PMC free article] [PubMed]
  • Rastsvetaeva, R. K., Chukanov, N. V. & Karpenko, V. Yu. (1997). Dokl. Akad. Nauk, 353, 354-357.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography