PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o891.
Published online 2009 March 28. doi:  10.1107/S1600536809010320
PMCID: PMC2969099

2-(Pyrene-1-yl)-1,3-dithiane

Abstract

In the title compound, C20H16S2, the pyrene ring is planar [maximum deviation 0.0144 (15) Å] and the dithiane ring adopts a chair conformation. The crystal packing is stabilized by C—H(...)π inter­actions. An intra­molecular C—H(...)S hydrogen bond generates an S(5) ring motif.

Related literature

For thio­nation reactions, see: Goswami & Maity (2008 [triangle]); Goswami et al. (2009 [triangle]); Fun et al. (2009 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995 [triangle]). For ring puckering analysis, see: Cremer & Pople (1975 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o891-scheme1.jpg

Experimental

Crystal data

  • C20H16S2
  • M r = 320.45
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o891-efi1.jpg
  • a = 7.1424 (1) Å
  • b = 8.6016 (1) Å
  • c = 24.5049 (2) Å
  • V = 1505.48 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.35 mm−1
  • T = 100 K
  • 0.36 × 0.17 × 0.11 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.885, T max = 0.962
  • 29712 measured reflections
  • 6424 independent reflections
  • 5501 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.092
  • S = 1.05
  • 6424 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.27 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2662 Friedel pairs
  • Flack parameter: 0.03 (5)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010320/at2745sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010320/at2745Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. ACM, NKD and SG thank the DST [SR/S1/OC-13/2005], Government of India, for financial support. ACM and NKD thank the UGC, Government of India, for awarding them each a fellowship.

supplementary crystallographic information

Comment

Thioacetal protection of carbonyl groups is of paramount importance in synthetic organic chemistry and hence the development of novel thionation reactions remains of great interest (Goswami & Maity, 2008; Fun et al., 2009; Goswami et al., 2009). In addition, thioacetals are also utilized as masked acyl anions or masked methylene functions in carbon-carbon bond forming reactions. Here we report the synthesis of 2-pyrene-1-yl-[1,3]dithiane from pyrene-1-aldehyde using BF3—Et2O as catalyst and its crystal structure.

The asymmetric unit of (I), (Fig. 1), consists of one molecule of the title compound. The bond lengths (Allen et al., 1987) and bond angles are found to have normal values. The pyrene ring is essentially planar with the maximum deviation from planarity being 0.0144 (15)Å for atom C15. The dithiane group adopts a chair conformation with the puckering parameters Q = 0.7477 (12) Å, θ = 9.61 (10)° and [var phi] = 66.3 (5)° (Cremer & Pople, 1975).

The crystal packing is stabilized by C—H···π interactions (Table 1). An intramolecular C—H···S hydrogen bonding generates an S(5) ring motif (Bernstein et al., 1995).

Experimental

To a stirred solution of pyrene-1-aldehyde (500 mg., 2.17 mmol) and boron trifluoride etherate (0.5 ml) in dichloromethane (50 ml) cooled at 273 K is added 1,3-propanedithiol (490 mg, 4.5 mmol) dropwise over 15 min with stirring. The mixture is stirred at room temperature for 3 h. The progress of the reaction is monitored by TLC. After completion of the reaction, NaHCO3 solution is added slowly and carefully to neutralize the mixture at room temperature which is then extracted with dichloromethane. The organic layer is dried (anhydrous Na2SO4) and then the solvent is removed under reduced pressure. The crude product was purified by column chromatography using silica gel with 10% ethyl acetate in pet ether as eluant to afford 2-pyrene-1-yl-[1,3]dithiane (620 mg, 89%) as a colourless crystalline solid along with other thiane derivatives.

Refinement

H atoms were positioned geometrically [C–H = 0.93–0.98 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C). 2662 Friedel pairs were used to determine the absolute configuration.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis. Dashed lines indicate the hydrogen bonding.

Crystal data

C20H16S2F(000) = 672
Mr = 320.45Dx = 1.414 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9340 reflections
a = 7.1424 (1) Åθ = 2.5–33.7°
b = 8.6016 (1) ŵ = 0.35 mm1
c = 24.5049 (2) ÅT = 100 K
V = 1505.48 (3) Å3Block, colourless
Z = 40.36 × 0.17 × 0.11 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer6424 independent reflections
Radiation source: fine-focus sealed tube5501 reflections with I > 2σ(I)
graphiteRint = 0.041
[var phi] and ω scansθmax = 35.1°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −11→11
Tmin = 0.885, Tmax = 0.962k = −13→13
29712 measured reflectionsl = −39→39

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.092w = 1/[σ2(Fo2) + (0.0461P)2 + 0.0807P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.004
6424 reflectionsΔρmax = 0.48 e Å3
199 parametersΔρmin = −0.27 e Å3
0 restraintsAbsolute structure: Flack (1983), 2662 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.03 (5)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.38288 (5)0.10233 (4)0.977454 (13)0.01668 (8)
S20.68513 (5)−0.07534 (4)1.037145 (12)0.01665 (8)
C10.6709 (2)−0.12016 (15)0.77433 (5)0.0134 (2)
C20.73272 (19)−0.07300 (16)0.82744 (5)0.0131 (2)
C30.9112 (2)−0.00108 (16)0.83308 (5)0.0140 (2)
C41.0265 (2)0.01927 (17)0.78565 (6)0.0173 (3)
H4A1.14430.06400.78940.021*
C50.9675 (2)−0.02513 (17)0.73559 (6)0.0177 (3)
H5A1.0456−0.01070.70570.021*
C60.7869 (2)−0.09392 (16)0.72787 (5)0.0156 (3)
C70.7187 (2)−0.13545 (17)0.67611 (5)0.0180 (3)
H7A0.7932−0.11930.64550.022*
C80.5425 (2)−0.19998 (17)0.66994 (6)0.0190 (3)
H8A0.4998−0.22640.63530.023*
C90.4287 (2)−0.22556 (16)0.71502 (5)0.0180 (3)
H9A0.3102−0.26820.71030.022*
C100.4912 (2)−0.18750 (16)0.76761 (5)0.0145 (2)
C110.3773 (2)−0.21097 (16)0.81490 (5)0.0162 (3)
H11A0.2612−0.25880.81100.019*
C120.4341 (2)−0.16537 (17)0.86520 (5)0.0155 (3)
H12A0.3555−0.18100.89500.019*
C130.61341 (19)−0.09331 (15)0.87345 (5)0.0129 (2)
C140.6739 (2)−0.03780 (15)0.92506 (5)0.0139 (2)
C150.8468 (2)0.03716 (16)0.92932 (5)0.0159 (3)
H15A0.88380.07710.96290.019*
C160.9649 (2)0.05354 (16)0.88468 (5)0.0164 (3)
H16A1.08080.10120.88900.020*
C170.54924 (19)−0.05773 (15)0.97455 (5)0.0142 (2)
H17A0.4780−0.15420.96980.017*
C180.2364 (2)0.03068 (18)1.03263 (5)0.0201 (3)
H18A0.13660.10491.03910.024*
H18B0.1791−0.06631.02130.024*
C190.3411 (2)0.00340 (18)1.08623 (5)0.0184 (3)
H19A0.39930.10011.09750.022*
H19B0.2516−0.02591.11420.022*
C200.4911 (2)−0.12196 (17)1.08241 (5)0.0174 (3)
H20A0.4331−0.21751.06990.021*
H20B0.5404−0.14101.11870.021*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01679 (16)0.01854 (16)0.01470 (14)0.00372 (13)−0.00236 (11)0.00034 (12)
S20.01684 (15)0.02099 (17)0.01214 (13)0.00328 (14)−0.00233 (11)0.00104 (12)
C10.0165 (6)0.0116 (5)0.0120 (5)0.0012 (5)−0.0008 (4)−0.0008 (4)
C20.0142 (6)0.0121 (6)0.0131 (5)0.0004 (5)−0.0012 (4)0.0010 (4)
C30.0131 (6)0.0128 (6)0.0160 (5)0.0010 (5)−0.0021 (5)0.0015 (4)
C40.0148 (7)0.0169 (6)0.0203 (6)0.0002 (5)0.0011 (5)0.0020 (5)
C50.0171 (7)0.0185 (7)0.0177 (6)0.0019 (5)0.0038 (5)0.0024 (5)
C60.0174 (6)0.0145 (6)0.0148 (5)0.0021 (5)0.0004 (4)0.0012 (5)
C70.0236 (7)0.0177 (7)0.0128 (6)0.0025 (5)0.0003 (5)0.0001 (5)
C80.0256 (7)0.0182 (7)0.0133 (6)0.0021 (6)−0.0034 (5)−0.0019 (5)
C90.0216 (7)0.0158 (6)0.0166 (6)−0.0008 (5)−0.0035 (5)−0.0020 (5)
C100.0178 (6)0.0124 (6)0.0134 (5)0.0001 (5)−0.0017 (5)−0.0019 (4)
C110.0159 (6)0.0169 (6)0.0159 (6)−0.0033 (5)−0.0015 (5)−0.0010 (5)
C120.0159 (6)0.0164 (6)0.0141 (5)−0.0028 (5)0.0002 (5)0.0007 (5)
C130.0153 (6)0.0103 (5)0.0130 (5)0.0004 (5)−0.0015 (4)0.0001 (4)
C140.0151 (6)0.0133 (6)0.0133 (5)0.0012 (5)−0.0021 (5)0.0003 (4)
C150.0181 (7)0.0157 (6)0.0138 (5)−0.0010 (5)−0.0043 (5)−0.0001 (5)
C160.0147 (6)0.0160 (6)0.0186 (6)−0.0016 (5)−0.0027 (5)0.0016 (5)
C170.0163 (6)0.0148 (6)0.0115 (5)0.0014 (5)−0.0024 (4)−0.0008 (4)
C180.0154 (6)0.0269 (7)0.0179 (6)0.0021 (6)−0.0001 (5)−0.0018 (5)
C190.0212 (7)0.0212 (7)0.0128 (5)0.0008 (6)0.0005 (5)−0.0010 (5)
C200.0207 (7)0.0179 (7)0.0136 (5)−0.0005 (6)0.0001 (5)0.0018 (5)

Geometric parameters (Å, °)

S1—C181.8173 (15)C9—H9A0.9300
S1—C171.8200 (14)C10—C111.4301 (19)
S2—C201.8200 (15)C11—C121.3557 (18)
S2—C171.8214 (13)C11—H11A0.9300
C1—C101.418 (2)C12—C131.4373 (19)
C1—C61.4260 (18)C12—H12A0.9300
C1—C21.4328 (17)C13—C141.4191 (17)
C2—C31.4239 (19)C14—C151.397 (2)
C2—C131.4242 (17)C14—C171.5144 (18)
C3—C161.4024 (18)C15—C161.3884 (19)
C3—C41.4349 (19)C15—H15A0.9300
C4—C51.3521 (19)C16—H16A0.9300
C4—H4A0.9300C17—H17A0.9800
C5—C61.432 (2)C18—C191.5298 (19)
C5—H5A0.9300C18—H18A0.9700
C6—C71.4047 (18)C18—H18B0.9700
C7—C81.384 (2)C19—C201.523 (2)
C7—H7A0.9300C19—H19A0.9700
C8—C91.389 (2)C19—H19B0.9700
C8—H8A0.9300C20—H20A0.9700
C9—C101.4025 (18)C20—H20B0.9700
C18—S1—C1798.54 (7)C13—C12—H12A119.4
C20—S2—C1797.23 (6)C14—C13—C2118.82 (12)
C10—C1—C6119.86 (11)C14—C13—C12122.81 (12)
C10—C1—C2120.01 (12)C2—C13—C12118.34 (11)
C6—C1—C2120.09 (12)C15—C14—C13119.42 (12)
C3—C2—C13120.81 (11)C15—C14—C17120.80 (11)
C3—C2—C1119.16 (12)C13—C14—C17119.77 (12)
C13—C2—C1120.00 (12)C16—C15—C14121.66 (12)
C16—C3—C2118.55 (12)C16—C15—H15A119.2
C16—C3—C4122.18 (13)C14—C15—H15A119.2
C2—C3—C4119.21 (12)C15—C16—C3120.69 (13)
C5—C4—C3121.43 (14)C15—C16—H16A119.7
C5—C4—H4A119.3C3—C16—H16A119.7
C3—C4—H4A119.3C14—C17—S1109.24 (9)
C4—C5—C6121.17 (13)C14—C17—S2111.75 (9)
C4—C5—H5A119.4S1—C17—S2112.20 (7)
C6—C5—H5A119.4C14—C17—H17A107.8
C7—C6—C1118.64 (13)S1—C17—H17A107.8
C7—C6—C5122.46 (12)S2—C17—H17A107.8
C1—C6—C5118.89 (11)C19—C18—S1114.16 (10)
C8—C7—C6121.05 (13)C19—C18—H18A108.7
C8—C7—H7A119.5S1—C18—H18A108.7
C6—C7—H7A119.5C19—C18—H18B108.7
C7—C8—C9120.58 (13)S1—C18—H18B108.7
C7—C8—H8A119.7H18A—C18—H18B107.6
C9—C8—H8A119.7C20—C19—C18113.57 (11)
C8—C9—C10120.51 (14)C20—C19—H19A108.9
C8—C9—H9A119.7C18—C19—H19A108.9
C10—C9—H9A119.7C20—C19—H19B108.9
C9—C10—C1119.35 (13)C18—C19—H19B108.9
C9—C10—C11122.04 (13)H19A—C19—H19B107.7
C1—C10—C11118.60 (11)C19—C20—S2114.65 (10)
C12—C11—C10121.71 (13)C19—C20—H20A108.6
C12—C11—H11A119.1S2—C20—H20A108.6
C10—C11—H11A119.1C19—C20—H20B108.6
C11—C12—C13121.29 (13)S2—C20—H20B108.6
C11—C12—H12A119.4H20A—C20—H20B107.6
C10—C1—C2—C3−178.01 (12)C10—C11—C12—C13−1.0 (2)
C6—C1—C2—C3−0.47 (19)C3—C2—C13—C141.21 (19)
C10—C1—C2—C13−0.20 (19)C1—C2—C13—C14−176.56 (12)
C6—C1—C2—C13177.34 (12)C3—C2—C13—C12179.43 (12)
C13—C2—C3—C16−1.84 (19)C1—C2—C13—C121.66 (19)
C1—C2—C3—C16175.95 (13)C11—C12—C13—C14177.07 (13)
C13—C2—C3—C4−179.16 (13)C11—C12—C13—C2−1.1 (2)
C1—C2—C3—C4−1.37 (19)C2—C13—C14—C150.97 (19)
C16—C3—C4—C5−175.68 (14)C12—C13—C14—C15−177.17 (13)
C2—C3—C4—C51.5 (2)C2—C13—C14—C17179.86 (12)
C3—C4—C5—C60.2 (2)C12—C13—C14—C171.7 (2)
C10—C1—C6—C70.25 (19)C13—C14—C15—C16−2.6 (2)
C2—C1—C6—C7−177.30 (13)C17—C14—C15—C16178.56 (12)
C10—C1—C6—C5179.72 (13)C14—C15—C16—C31.9 (2)
C2—C1—C6—C52.17 (19)C2—C3—C16—C150.3 (2)
C4—C5—C6—C7177.38 (14)C4—C3—C16—C15177.52 (13)
C4—C5—C6—C1−2.1 (2)C15—C14—C17—S193.99 (13)
C1—C6—C7—C80.3 (2)C13—C14—C17—S1−84.88 (13)
C5—C6—C7—C8−179.18 (13)C15—C14—C17—S2−30.77 (16)
C6—C7—C8—C9−0.2 (2)C13—C14—C17—S2150.36 (10)
C7—C8—C9—C10−0.5 (2)C18—S1—C17—C14171.69 (9)
C8—C9—C10—C11.0 (2)C18—S1—C17—S2−63.82 (9)
C8—C9—C10—C11179.45 (13)C20—S2—C17—C14−172.85 (9)
C6—C1—C10—C9−0.88 (19)C20—S2—C17—S164.05 (8)
C2—C1—C10—C9176.67 (13)C17—S1—C18—C1959.16 (12)
C6—C1—C10—C11−179.38 (13)S1—C18—C19—C20−63.42 (15)
C2—C1—C10—C11−1.83 (19)C18—C19—C20—S265.04 (15)
C9—C10—C11—C12−175.99 (14)C17—S2—C20—C19−61.20 (11)
C1—C10—C11—C122.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15A···S20.932.653.0416 (13)106
C9—H9A···Cg1i0.932.683.4196 (15)137
C4—H4A···Cg2ii0.932.983.8073 (16)149
C20—H20A···Cg3iii0.972.783.5339 (15)135

Symmetry codes: (i) x+3/2, −y−1/2, −z+1; (ii) x+5/2, −y+1/2, −z+1; (iii) −x−1, y−1/2, −z+5/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2745).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354—1358.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fun, H.-K., Kia, R., Maity, A. C. & Goswami, S. (2009). Acta Cryst. E65, o173. [PMC free article] [PubMed]
  • Goswami, S. P. & Maity, A. C. (2008). Tetrahedron Lett.49, 3092–3096.
  • Goswami, S. P., Maity, A. C., Fun, H. K. & Chantrapromma, S. (2009). Eur. J. Org. Chem. pp. 1417–1426.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography