PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o782.
Published online 2009 March 19. doi:  10.1107/S1600536809009015
PMCID: PMC2969094

[Oxalylbis(aza­nedi­yl)]bis­{[amino­(2-pyrid­yl)methyl­ene]ammonium}

Abstract

The title compound, C14H16N8O2 2+·2ClO4 , was prepared by reaction of bis­[amino­(2-pyrid­yl)methyl­ene]oxalohydrazide with perchloric acid. The mol­ecular symmetry is Ci and thus the asymmetric unit comprises one half-mol­ecule. The dihedral angle between the aromatic ring and the plane of the oxamide group is 70.8 (3)°. The perchlorate anions and the cations are connected by inter­molecular N—H(...)O hydrogen bonds.

Related literature

For background to the design and synthesis of polynuclear mol­ecule-based magnetic materials, see: Niel et al. (2008 [triangle]); Zhao et al. (2004 [triangle]); Xu et al. (2001 [triangle], 2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o782-scheme1.jpg

Experimental

Crystal data

  • C14H16N8O2 2+·2ClO4
  • M r = 527.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o782-efi1.jpg
  • a = 5.0751 (11) Å
  • b = 13.725 (3) Å
  • c = 15.162 (3) Å
  • β = 98.605 (3)°
  • V = 1044.2 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.39 mm−1
  • T = 273 K
  • 0.31 × 0.25 × 0.22 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.882, T max = 0.914
  • 5016 measured reflections
  • 1824 independent reflections
  • 1455 reflections with I > 2σ(I)
  • R int = 0.078

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.128
  • S = 1.09
  • 1824 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809009015/kp2209sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009015/kp2209Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to Anhui Provincial Natural Science Research Project (KJ2009B240Z) and the National Natural Science Foundation of China (No. 20871039) for financial support.

supplementary crystallographic information

Comment

In recent years, researchers showed considerable interest in design and synthesis of polynuclear molecule-based magnetic materials, which were prepared by reactions of special organic molecules with transitional metals. (Niel et al., 2008; Xu et al., 2001; Xu et al., 2003); Zhao et al., 2004). Here we report a new compound, [(C14H16N8O2)(ClO4)2].

The asymmetric unit of the title compound comprises a half of the molecule (Fig. 1). In the structure of title compound, the dihedral angle between the aromatic ring and the plane of oxamide group is 70.8 °. Perchlorate anions and cations are connected by intermolecular N—H···O hydrogen bonds (Fig. 2, Table 1).

Experimental

All solvents and chemicals were of analytical grade and were used without further purification. Ligand was prepared by similar procedure reported in the literature (Zhao et al., 2004). For the synthesis of title compoud, a solution of ligand (0.1 mmol), HClO4(0.1 mmol) in 20 ml methanol was refluxed for 1 h, and then cooled to room temperature and filtered. Single crystals suitable for X-ray analysis were grown from the methanol solution by slow evaporation at room temperature in air. Anal. Calcd. for C14H16N8O10Cl2: C, 31.89; H, 3.06; N, 21.25. Found: C, 32.15; H, 3.18; N, 21.20.

Refinement

All hydrogen atoms were geomemetrically positioned (C—H 0.93–0.97 Å, N–H 0.86 Å) and refined as riding, with Uiso(H)=1.2 Ueq of the parent atom.

Figures

Fig. 1.
Molecular structure of the title compound, showing the 30% probability displacement ellipsoids and the atom-numbering [symmetry code: 1 - x,1 - y,1 - z].
Fig. 2.
The crystal packing of the title compound generated by intermolecular hydrogen bonds.

Crystal data

C14H16N8O22+·2ClO4F(000) = 540
Mr = 527.25Dx = 1.677 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2046 reflections
a = 5.0751 (11) Åθ = 2.7–26.2°
b = 13.725 (3) ŵ = 0.39 mm1
c = 15.162 (3) ÅT = 273 K
β = 98.605 (3)°Block, colourless
V = 1044.2 (4) Å30.31 × 0.25 × 0.22 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer1824 independent reflections
Radiation source: fine-focus sealed tube1455 reflections with I > 2σ(I)
graphiteRint = 0.078
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −6→5
Tmin = 0.882, Tmax = 0.914k = −13→16
5016 measured reflectionsl = −15→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.076P)2] where P = (Fo2 + 2Fc2)/3
1824 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.7001 (5)0.85329 (16)0.62706 (14)0.0356 (5)
C20.8640 (5)0.90729 (18)0.68880 (16)0.0487 (6)
H21.02290.88190.71830.058*
C30.7835 (7)1.0013 (2)0.70546 (19)0.0654 (8)
H30.88871.04020.74690.078*
C40.5517 (8)1.03584 (19)0.6612 (2)0.0679 (9)
H40.49531.09870.67190.081*
C50.4000 (6)0.97677 (19)0.6001 (2)0.0604 (8)
H50.24091.00130.56980.073*
C60.7662 (4)0.75221 (14)0.60311 (13)0.0326 (5)
C70.4737 (4)0.54717 (15)0.52444 (14)0.0352 (5)
Cl10.54991 (12)0.77141 (5)0.85280 (3)0.0450 (3)
N10.5942 (4)0.71127 (13)0.53978 (12)0.0370 (5)
H1A0.45300.74250.51750.044*
N20.6387 (4)0.61898 (12)0.50903 (11)0.0380 (5)
H2A0.77000.60790.48050.046*
N30.4704 (4)0.88577 (14)0.58226 (14)0.0486 (5)
N40.9765 (4)0.70721 (15)0.64025 (12)0.0445 (5)
H4A1.00820.64890.62400.053*
H4B1.08520.73550.68130.053*
O10.3033 (4)0.55207 (11)0.57270 (12)0.0506 (5)
O20.4275 (4)0.72826 (16)0.77218 (13)0.0710 (6)
O30.4490 (5)0.86811 (15)0.85821 (15)0.0793 (7)
O40.8287 (4)0.77292 (16)0.85160 (15)0.0730 (7)
O50.4956 (6)0.71688 (18)0.92652 (16)0.0973 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0392 (13)0.0310 (11)0.0376 (11)−0.0040 (9)0.0085 (10)−0.0016 (9)
C20.0529 (16)0.0435 (14)0.0490 (14)−0.0095 (11)0.0050 (11)−0.0077 (11)
C30.085 (2)0.0450 (16)0.0675 (18)−0.0155 (16)0.0163 (17)−0.0204 (14)
C40.096 (3)0.0315 (15)0.083 (2)−0.0006 (15)0.0361 (19)−0.0080 (13)
C50.0628 (19)0.0409 (15)0.080 (2)0.0110 (13)0.0182 (15)0.0084 (13)
C60.0362 (13)0.0330 (11)0.0287 (12)−0.0032 (9)0.0049 (9)−0.0007 (9)
C70.0380 (13)0.0308 (12)0.0348 (12)0.0014 (9)−0.0012 (9)−0.0029 (8)
Cl10.0409 (4)0.0542 (4)0.0375 (4)0.0076 (3)−0.0019 (3)−0.0028 (2)
N10.0371 (11)0.0292 (10)0.0422 (10)0.0005 (7)−0.0027 (8)−0.0062 (7)
N20.0419 (11)0.0300 (10)0.0419 (10)−0.0024 (8)0.0058 (8)−0.0090 (8)
N30.0509 (13)0.0354 (11)0.0576 (12)0.0061 (9)0.0020 (10)−0.0010 (9)
N40.0430 (12)0.0399 (12)0.0466 (12)0.0047 (9)−0.0069 (9)−0.0093 (8)
O10.0580 (12)0.0374 (9)0.0614 (11)−0.0018 (8)0.0246 (9)−0.0084 (8)
O20.0610 (14)0.0874 (16)0.0572 (12)−0.0057 (10)−0.0150 (9)−0.0154 (10)
O30.0885 (16)0.0567 (14)0.0966 (15)0.0244 (12)0.0262 (13)−0.0043 (11)
O40.0374 (12)0.0868 (16)0.0894 (16)0.0060 (10)−0.0079 (10)−0.0147 (11)
O50.130 (2)0.106 (2)0.0648 (14)0.0451 (16)0.0439 (15)0.0363 (13)

Geometric parameters (Å, °)

C1—N31.335 (3)C7—O11.215 (3)
C1—C21.373 (3)C7—N21.336 (3)
C1—C61.485 (3)C7—C7i1.535 (4)
C2—C31.387 (4)Cl1—O51.406 (2)
C2—H20.9300Cl1—O21.415 (2)
C3—C41.351 (5)Cl1—O41.418 (2)
C3—H30.9300Cl1—O31.429 (2)
C4—C51.377 (5)N1—N21.380 (2)
C4—H40.9300N1—H1A0.8600
C5—N31.338 (3)N2—H2A0.8600
C5—H50.9300N4—H4A0.8600
C6—N41.287 (3)N4—H4B0.8600
C6—N11.322 (3)
N3—C1—C2124.1 (2)O1—C7—C7i121.9 (2)
N3—C1—C6113.56 (19)N2—C7—C7i112.3 (2)
C2—C1—C6122.3 (2)O5—Cl1—O2110.53 (18)
C1—C2—C3117.5 (3)O5—Cl1—O4109.43 (16)
C1—C2—H2121.3O2—Cl1—O4107.75 (14)
C3—C2—H2121.3O5—Cl1—O3109.51 (14)
C4—C3—C2119.6 (3)O2—Cl1—O3108.86 (13)
C4—C3—H3120.2O4—Cl1—O3110.74 (13)
C2—C3—H3120.2C6—N1—N2120.78 (19)
C3—C4—C5119.0 (3)C6—N1—H1A119.6
C3—C4—H4120.5N2—N1—H1A119.6
C5—C4—H4120.5C7—N2—N1118.65 (18)
N3—C5—C4123.1 (3)C7—N2—H2A120.7
N3—C5—H5118.4N1—N2—H2A120.7
C4—C5—H5118.4C1—N3—C5116.6 (2)
N4—C6—N1121.8 (2)C6—N4—H4A120.0
N4—C6—C1123.0 (2)C6—N4—H4B120.0
N1—C6—C1115.2 (2)H4A—N4—H4B120.0
O1—C7—N2125.83 (19)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O4ii0.862.512.975 (3)115
N1—H1A···O5ii0.862.583.404 (4)162
N2—H2A···O3iii0.862.212.970 (3)147
N4—H4A···O1iv0.862.232.974 (3)145
N4—H4B···O2iv0.862.052.820 (3)148

Symmetry codes: (ii) x−1/2, −y+3/2, z−1/2; (iii) x+1/2, −y+3/2, z−1/2; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2209).

References

  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Niel, V., Milway, V. A., Dawe, L. N. & Thompson, L. K. (2008). Inorg. Chem.47, 176–189. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, Z. Q., Thompson, L. K., Black, D. A. & Miller, D. O. (2001). Dalton Trans. pp. 2042–2048.
  • Xu, Z. Q., Thompson, L. K., Milway, V. A., Zhao, L. & Miller, D. O. (2003). Inorg. Chem.42, 2950–2959. [PubMed]
  • Zhao, L., Niel, V., Thompson, L. K. & Xu, Z. Q. (2004). Dalton Trans. pp. 1446–1455. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography