PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m446.
Published online 2009 March 25. doi:  10.1107/S1600536809010629
PMCID: PMC2969090

{μ-1,3-Bis[(3,5-dimethyl­pyrazol-1-yl)meth­yl]benzene-κ2 N 2:N 2′}di-μ-chlorido-bis­[chloridopalladium(II)] toluene solvate

Abstract

In the title complex, [Pd2Cl4(C18H22N4)]·C7H8, each of the two four-coordinated PdII atoms is in a slightly distorted square-planar geometry, defined by one N atom from the ligand, two bridging Cl atoms and one terminal Cl atom. Inter­molecular C—H(...)π inter­actions between the pyrazole ring H atom and the toluene ring stabilize the crystal structure.

Related literature

For general background to poly(pyrazol-1-yl-meth­yl)benzene ligands and their palladium complexes, see: Hartshorn & Steel (1995 [triangle], 1997 [triangle], 1998 [triangle]); Motsoane et al. (2007 [triangle]); Yen et al. (2006 [triangle]). For related structures, see: Guzei et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m446-scheme1.jpg

Experimental

Crystal data

  • [Pd2Cl4(C18H22N4)]·C7H8
  • M r = 741.13
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m446-efi3.jpg
  • a = 10.4572 (10) Å
  • b = 25.376 (2) Å
  • c = 12.0782 (12) Å
  • β = 112.395 (4)°
  • V = 2963.4 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.60 mm−1
  • T = 298 K
  • 0.50 × 0.12 × 0.06 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.503, T max = 0.910
  • 22587 measured reflections
  • 7158 independent reflections
  • 4777 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.098
  • S = 1.02
  • 7158 reflections
  • 321 parameters
  • 10 restraints
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010629/hy2189sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010629/hy2189Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Johannesburg and the National Research Foundation (South Africa) for financial support for this project.

supplementary crystallographic information

Comment

The title compound is of interest as part of a study of poly(pyrazol-1-yl-methyl)benzene palladium complexes as catalyst precursors for olefin oligomerization and polymerization. In a recent report (Motsoane et al., 2007), coordination of Pd atom was shown to vary depending on the position of the pyrazol-1-yl-methyl group on the benzene linker. Poly(pyrazol-1-yl-methyl)benzene ligands can coordinate to Pd atoms through two independent pyrazolyl units (Motsoane et al., 2007) or as a chelate ligand to a dinuclear unit with two bridging halides between the Pd atoms in a Pd2X4 (X = Cl) fashion (Yen et al., 2006). This potential of poly(pyrazol-1-yl-methyl)benzene ligands exhibiting a variety of coordination modes was first reported in 1995 (Hartshorn & Steel, 1995). For the palladium complexes, two bonding modes have been reported. The first is a cage structure with six PdCl2 units and four 1,3,5-tris(pyrazol-1-yl-methyl)-2,4,6-triethylbenzene ligands, with coordination through the pyrazole N atoms (Hartshorn & Steel, 1997), and the second involves C—H activation, where coordination is through a pyrazole N atom as well as through the activated C atom (Hartshorn & Steel, 1998).

The title compound (Fig. 1) crystallizes from a mixture of chloroform and toluene and contains a dinuclear Pd complex molecule and a solvent toluene molecule in the asymmetric unit. The two PdII atoms are bridged by two Cl atoms. There are examples of similar structures in the literature, where the metal centers are bridged by halogen atoms (Cl or Br) (Guzei et al., 2003; Motsoane et al., 2007). Each of the Pd atoms has a distorted square-planar geometry (Table 1). The two square planes defined by the atoms around the Pd centers, N2, Cl1, Cl3, Cl4 for Pd1 and N4, Cl2, Cl3,Cl4 for Pd2, have a dihedral angle of 39.59 (1)° and atomic deviations from the planes of 0.018 and 0.011 Å, respectively. This dihedral angle results in a close contact between the two Pd centers [3.2116 (5) Å] and is probably due to steric bulk of the whole complex. The terminal as well as bridging Pd—Cl distances average 2.310 Å, which is close to the same distances of similar structues from the CSD (Guzei et al., 2003; Motsoane et al., 2007). The Pd—N bond distances [2.005 (3) and 2.002 (3) Å] are shorter than the corresponding distances from the CSD (2.1 (1) Å), as calculated by Guzei et al. (2003).

In the crystal structure, the dinuclear complex molecule is connected to the toluene molecule through a C—H···π interaction, with an H16···π distance of 2.93 Å (Fig. 2).

Experimental

To a solution of PdCl2(NCMe)2 (0.44 g, 1.70 mmol) in CH2Cl2 (25 mL) was added 1,3-bis[(3,5-dimethylpyrazole-1-yl)methyl]benzene (0.50 g, 1.70 mmol). The resultant solution was stired overnight, and after removal of solvent, a dark orange solid was obtained. Recrystallization was done in a mixture of CHCl3 and toluene, giving needle-shaped crystals.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (CH2) and 0.96 (CH3) Å and with Uiso(H) = 1.2(or 1.5 for methyl)Ueq(C).

Figures

Fig. 1.
Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms and toluene molecule have been omitted for clarity.
Fig. 2.
Packing diagram of the title compound, showing the intermolecular C—H···π interactions (dashed lines) linking the Pd complex and the toluene solvent molecule. [Symmetry code: (i) 1/2+x, 3/2-y, -1/2+z.]

Crystal data

[Pd2Cl4(C18H22N4)]·C7H8F(000) = 1472
Mr = 741.13Dx = 1.661 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 22587 reflections
a = 10.4572 (10) Åθ = 2.0–28.0°
b = 25.376 (2) ŵ = 1.60 mm1
c = 12.0782 (12) ÅT = 298 K
β = 112.395 (4)°Needle, brown
V = 2963.4 (5) Å30.50 × 0.12 × 0.06 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer7158 independent reflections
Radiation source: fine-focus sealed tube4777 reflections with I > 2σ(I)
graphiteRint = 0.045
[var phi] and ω scansθmax = 28.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −13→13
Tmin = 0.503, Tmax = 0.910k = −24→33
22587 measured reflectionsl = −10→15

Refinement

Refinement on F210 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042w = 1/[σ2(Fo2) + (0.0445P)2 + 1.0406P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max = 0.012
S = 1.02Δρmax = 0.53 e Å3
7158 reflectionsΔρmin = −0.57 e Å3
321 parameters

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1871 (7)0.8038 (2)0.2496 (6)0.099 (2)
H1A0.10590.80100.17750.149*
H1B0.19310.77380.29960.149*
H1C0.26760.80520.22970.149*
C20.1790 (5)0.85270 (18)0.3147 (5)0.0595 (13)
C30.1918 (5)0.8599 (2)0.4306 (5)0.0695 (14)
H30.20750.83370.48820.083*
C40.1771 (4)0.9140 (2)0.4470 (4)0.0571 (11)
C50.1804 (7)0.9431 (2)0.5530 (5)0.0889 (18)
H5A0.19830.97970.54440.133*
H5B0.25220.92910.62310.133*
H5C0.09280.93960.56090.133*
C60.1524 (4)0.91608 (18)0.1445 (4)0.0514 (11)
H6A0.07090.93760.10510.062*
H6B0.14450.88480.09630.062*
C70.2807 (4)0.94690 (18)0.1525 (4)0.0471 (11)
C80.4127 (5)0.9274 (2)0.2212 (5)0.0604 (13)
H80.42250.89550.26150.073*
C90.5274 (5)0.9558 (2)0.2283 (5)0.0695 (15)
H90.61510.94280.27270.083*
C100.5141 (4)1.0033 (2)0.1707 (5)0.0576 (13)
H100.59281.02200.17640.069*
C110.3838 (4)1.02362 (17)0.1036 (4)0.0450 (10)
C120.2680 (4)0.99412 (17)0.0948 (4)0.0433 (10)
H120.18031.00680.04880.052*
C130.3681 (4)1.07703 (17)0.0446 (4)0.0494 (11)
H13A0.40331.0755−0.01890.059*
H13B0.27091.08620.00900.059*
C140.6392 (5)1.1343 (2)0.0648 (5)0.0722 (15)
H14A0.66851.09830.06910.108*
H14B0.71871.15700.08930.108*
H14C0.57961.1426−0.01600.108*
C150.5632 (4)1.14228 (18)0.1452 (4)0.0493 (11)
C160.5951 (4)1.17376 (19)0.2460 (4)0.0579 (13)
H160.67141.19580.27800.070*
C170.4926 (4)1.16631 (17)0.2904 (4)0.0501 (11)
C180.4749 (5)1.1888 (2)0.3991 (5)0.0672 (14)
H18A0.38031.19910.37840.101*
H18B0.53391.21890.42710.101*
H18C0.49931.16260.46110.101*
N10.1581 (3)0.90068 (14)0.2629 (3)0.0473 (9)
N20.1594 (3)0.93824 (14)0.3438 (3)0.0446 (8)
N30.4434 (3)1.11796 (13)0.1316 (3)0.0453 (8)
N40.3997 (3)1.13181 (13)0.2198 (3)0.0435 (8)
Cl1−0.12855 (10)0.97616 (5)0.21818 (11)0.0614 (3)
Cl20.11537 (12)1.17589 (5)0.07665 (12)0.0656 (3)
Cl30.30569 (10)1.05135 (4)0.37297 (10)0.0524 (3)
Cl40.00312 (10)1.09512 (5)0.23267 (12)0.0601 (3)
Pd10.08672 (3)1.011252 (13)0.29434 (3)0.04228 (10)
Pd20.21405 (3)1.114894 (13)0.22275 (3)0.04230 (10)
C190.2046 (12)0.1522 (5)0.5868 (12)0.230 (7)
H19A0.17070.17320.51540.345*
H19B0.12810.13600.59920.345*
H19C0.26500.12530.57850.345*
C200.2793 (10)0.1850 (4)0.6875 (11)0.136 (3)
C210.3754 (11)0.2193 (4)0.6843 (11)0.147 (4)
H210.39400.22330.61540.177*
C220.4488 (12)0.2496 (5)0.7898 (14)0.165 (5)
H220.51580.27360.78920.198*
C230.4229 (9)0.2439 (4)0.8855 (11)0.149 (4)
H230.47040.26360.95380.179*
C240.3204 (9)0.2070 (4)0.8840 (9)0.126 (3)
H240.30320.20300.95360.151*
C250.2452 (9)0.1769 (3)0.7868 (10)0.129 (3)
H250.17750.15330.78720.155*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.134 (6)0.049 (4)0.098 (5)0.006 (3)0.026 (4)−0.002 (3)
C20.060 (3)0.039 (3)0.067 (4)0.002 (2)0.011 (2)0.008 (3)
C30.068 (3)0.058 (2)0.067 (4)0.004 (2)0.009 (3)0.022 (3)
C40.054 (2)0.063 (2)0.046 (2)0.003 (2)0.010 (2)0.012 (2)
C50.120 (5)0.093 (5)0.054 (3)0.018 (4)0.033 (3)0.010 (3)
C60.055 (2)0.049 (3)0.045 (3)0.0004 (19)0.013 (2)−0.007 (2)
C70.046 (2)0.049 (3)0.041 (2)0.0039 (18)0.0108 (18)−0.011 (2)
C80.060 (3)0.052 (3)0.065 (3)0.009 (2)0.019 (2)0.004 (3)
C90.047 (2)0.074 (4)0.081 (4)0.016 (2)0.016 (2)0.013 (3)
C100.044 (2)0.060 (3)0.065 (3)0.003 (2)0.016 (2)−0.002 (3)
C110.045 (2)0.049 (3)0.039 (2)0.0046 (18)0.0148 (17)−0.006 (2)
C120.0423 (19)0.048 (3)0.033 (2)0.0029 (17)0.0066 (16)−0.006 (2)
C130.047 (2)0.055 (3)0.046 (3)−0.0024 (19)0.0171 (19)−0.006 (2)
C140.055 (3)0.091 (4)0.076 (4)0.001 (3)0.031 (3)0.012 (3)
C150.041 (2)0.054 (3)0.048 (3)0.0002 (19)0.0114 (18)0.008 (2)
C160.045 (2)0.051 (3)0.065 (3)−0.0112 (19)0.006 (2)0.000 (3)
C170.047 (2)0.041 (3)0.051 (3)−0.0023 (18)0.0063 (19)−0.001 (2)
C180.077 (3)0.052 (3)0.059 (3)−0.009 (2)0.011 (3)−0.015 (3)
N10.0525 (19)0.038 (2)0.047 (2)−0.0025 (15)0.0139 (16)−0.0023 (18)
N20.0427 (17)0.047 (2)0.040 (2)−0.0013 (15)0.0111 (15)0.0000 (18)
N30.0402 (16)0.043 (2)0.047 (2)−0.0019 (14)0.0114 (15)0.0005 (17)
N40.0421 (16)0.041 (2)0.046 (2)−0.0030 (14)0.0150 (15)−0.0042 (17)
Cl10.0409 (5)0.0746 (9)0.0621 (8)−0.0089 (5)0.0123 (5)−0.0036 (6)
Cl20.0581 (6)0.0569 (8)0.0727 (9)0.0068 (5)0.0148 (6)0.0169 (7)
Cl30.0417 (5)0.0538 (7)0.0524 (7)−0.0020 (4)0.0074 (4)0.0048 (5)
Cl40.0436 (5)0.0561 (7)0.0845 (9)0.0107 (5)0.0286 (5)0.0119 (7)
Pd10.03703 (15)0.0461 (2)0.04121 (19)0.00065 (13)0.01216 (13)0.00031 (16)
Pd20.03750 (15)0.03964 (19)0.0467 (2)0.00144 (12)0.01255 (13)−0.00171 (15)
C190.199 (12)0.186 (12)0.217 (13)0.093 (10)−0.019 (10)−0.040 (11)
C200.126 (7)0.115 (7)0.167 (9)0.043 (5)0.056 (6)0.040 (7)
C210.153 (9)0.128 (9)0.208 (11)0.062 (5)0.122 (9)0.070 (7)
C220.174 (11)0.131 (9)0.249 (14)0.052 (7)0.145 (11)0.050 (8)
C230.118 (6)0.126 (7)0.220 (11)0.052 (4)0.082 (7)0.070 (8)
C240.115 (6)0.116 (7)0.167 (8)0.061 (4)0.076 (6)0.075 (6)
C250.116 (6)0.091 (6)0.187 (9)0.054 (5)0.065 (6)0.068 (6)

Geometric parameters (Å, °)

C1—C21.488 (8)C15—N31.349 (5)
C1—H1A0.9600C15—C161.387 (6)
C1—H1B0.9600C16—C171.381 (7)
C1—H1C0.9600C16—H160.9300
C2—N11.348 (6)C17—N41.344 (5)
C2—C31.367 (7)C17—C181.506 (7)
C3—C41.403 (7)C18—H18A0.9600
C3—H30.9300C18—H18B0.9600
C4—N21.339 (6)C18—H18C0.9600
C4—C51.468 (7)N1—N21.361 (5)
C5—H5A0.9600N2—Pd12.005 (3)
C5—H5B0.9600N3—N41.356 (5)
C5—H5C0.9600N4—Pd22.002 (3)
C6—N11.462 (6)Cl1—Pd12.2647 (11)
C6—C71.524 (6)Cl2—Pd22.2774 (12)
C6—H6A0.9700Cl3—Pd22.3421 (11)
C6—H6B0.9700Cl3—Pd12.3502 (10)
C7—C121.367 (6)Cl4—Pd22.3092 (11)
C7—C81.402 (6)Cl4—Pd12.3135 (12)
C8—C91.375 (7)Pd1—Pd23.2117 (5)
C8—H80.9300C19—C201.435 (11)
C9—C101.371 (7)C19—H19A0.9600
C9—H90.9300C19—H19B0.9600
C10—C111.393 (6)C19—H19C0.9600
C10—H100.9300C20—C211.341 (13)
C11—C121.393 (6)C20—C251.391 (13)
C11—C131.511 (6)C21—C221.435 (15)
C12—H120.9300C21—H210.9300
C13—N31.474 (5)C22—C231.292 (13)
C13—H13A0.9700C22—H220.9300
C13—H13B0.9700C23—C241.418 (12)
C14—C151.484 (7)C23—H230.9300
C14—H14A0.9600C24—C251.370 (12)
C14—H14B0.9600C24—H240.9300
C14—H14C0.9600C25—H250.9300
C2—C1—H1A109.5C16—C17—C18131.1 (4)
C2—C1—H1B109.5C17—C18—H18A109.5
H1A—C1—H1B109.5C17—C18—H18B109.5
C2—C1—H1C109.5H18A—C18—H18B109.5
H1A—C1—H1C109.5C17—C18—H18C109.5
H1B—C1—H1C109.5H18A—C18—H18C109.5
N1—C2—C3106.9 (4)H18B—C18—H18C109.5
N1—C2—C1122.6 (5)C2—N1—N2110.1 (4)
C3—C2—C1130.5 (5)C2—N1—C6129.4 (4)
C2—C3—C4107.6 (5)N2—N1—C6120.0 (3)
C2—C3—H3126.2C4—N2—N1107.8 (4)
C4—C3—H3126.2C4—N2—Pd1127.2 (3)
N2—C4—C3107.6 (5)N1—N2—Pd1122.3 (3)
N2—C4—C5122.0 (5)C15—N3—N4111.1 (3)
C3—C4—C5130.5 (5)C15—N3—C13128.9 (4)
C4—C5—H5A109.5N4—N3—C13119.6 (3)
C4—C5—H5B109.5C17—N4—N3106.8 (3)
H5A—C5—H5B109.5C17—N4—Pd2126.8 (3)
C4—C5—H5C109.5N3—N4—Pd2125.3 (2)
H5A—C5—H5C109.5Pd2—Cl3—Pd186.39 (3)
H5B—C5—H5C109.5Pd2—Cl4—Pd188.01 (4)
N1—C6—C7111.6 (3)N2—Pd1—Cl187.88 (10)
N1—C6—H6A109.3N2—Pd1—Cl4178.57 (11)
C7—C6—H6A109.3Cl1—Pd1—Cl492.05 (4)
N1—C6—H6B109.3N2—Pd1—Cl394.55 (9)
C7—C6—H6B109.3Cl1—Pd1—Cl3177.47 (5)
H6A—C6—H6B108.0Cl4—Pd1—Cl385.54 (4)
C12—C7—C8119.7 (4)N2—Pd1—Pd2133.45 (9)
C12—C7—C6120.3 (4)Cl1—Pd1—Pd2131.49 (4)
C8—C7—C6120.0 (4)Cl4—Pd1—Pd245.94 (3)
C9—C8—C7119.3 (5)Cl3—Pd1—Pd246.70 (3)
C9—C8—H8120.4N4—Pd2—Cl289.80 (10)
C7—C8—H8120.4N4—Pd2—Cl4178.19 (11)
C10—C9—C8120.9 (4)Cl2—Pd2—Cl491.61 (4)
C10—C9—H9119.6N4—Pd2—Cl392.76 (10)
C8—C9—H9119.6Cl2—Pd2—Cl3177.44 (4)
C9—C10—C11120.5 (4)Cl4—Pd2—Cl385.82 (4)
C9—C10—H10119.7N4—Pd2—Pd1133.22 (10)
C11—C10—H10119.7Cl2—Pd2—Pd1130.78 (3)
C12—C11—C10118.4 (4)Cl4—Pd2—Pd146.05 (3)
C12—C11—C13120.8 (4)Cl3—Pd2—Pd146.91 (3)
C10—C11—C13120.8 (4)C20—C19—H19A109.5
C7—C12—C11121.3 (4)C20—C19—H19B109.5
C7—C12—H12119.4H19A—C19—H19B109.5
C11—C12—H12119.4C20—C19—H19C109.5
N3—C13—C11111.3 (3)H19A—C19—H19C109.5
N3—C13—H13A109.4H19B—C19—H19C109.5
C11—C13—H13A109.4C21—C20—C19121.7 (13)
N3—C13—H13B109.4C21—C20—C25124.1 (12)
C11—C13—H13B109.4C19—C20—C25114.2 (12)
H13A—C13—H13B108.0C20—C21—C22118.4 (12)
C15—C14—H14A109.5C20—C21—H21120.8
C15—C14—H14B109.5C22—C21—H21120.8
H14A—C14—H14B109.5C23—C22—C21120.7 (13)
C15—C14—H14C109.5C23—C22—H22119.6
H14A—C14—H14C109.5C21—C22—H22119.6
H14B—C14—H14C109.5C22—C23—C24118.5 (13)
N3—C15—C16105.8 (4)C22—C23—H23120.7
N3—C15—C14124.2 (4)C24—C23—H23120.7
C16—C15—C14130.1 (4)C25—C24—C23124.3 (11)
C17—C16—C15107.4 (4)C25—C24—H24117.9
C17—C16—H16126.3C23—C24—H24117.9
C15—C16—H16126.3C24—C25—C20113.9 (10)
N4—C17—C16108.9 (4)C24—C25—H25123.0
N4—C17—C18120.0 (4)C20—C25—H25123.0
N1—C2—C3—C40.3 (5)C15—N3—N4—C170.9 (5)
C1—C2—C3—C4179.3 (5)C13—N3—N4—C17175.2 (3)
C2—C3—C4—N2−1.5 (5)C15—N3—N4—Pd2169.8 (3)
C2—C3—C4—C5179.3 (5)C13—N3—N4—Pd2−15.8 (5)
N1—C6—C7—C12−129.2 (4)C4—N2—Pd1—Cl1−88.8 (3)
N1—C6—C7—C849.6 (6)N1—N2—Pd1—Cl170.3 (3)
C12—C7—C8—C9−0.7 (7)C4—N2—Pd1—Cl390.5 (3)
C6—C7—C8—C9−179.5 (5)N1—N2—Pd1—Cl3−110.3 (3)
C7—C8—C9—C101.0 (8)C4—N2—Pd1—Pd2119.8 (3)
C8—C9—C10—C110.0 (8)N1—N2—Pd1—Pd2−81.1 (3)
C9—C10—C11—C12−1.2 (7)Pd2—Cl4—Pd1—Cl1−152.62 (5)
C9—C10—C11—C13177.1 (4)Pd2—Cl4—Pd1—Cl328.14 (4)
C8—C7—C12—C11−0.6 (6)Pd2—Cl3—Pd1—N2150.81 (11)
C6—C7—C12—C11178.2 (4)Pd2—Cl3—Pd1—Cl4−27.75 (4)
C10—C11—C12—C71.5 (6)C17—N4—Pd2—Cl294.0 (4)
C13—C11—C12—C7−176.8 (4)N3—N4—Pd2—Cl2−72.8 (3)
C12—C11—C13—N3125.1 (4)C17—N4—Pd2—Cl3−86.0 (3)
C10—C11—C13—N3−53.2 (5)N3—N4—Pd2—Cl3107.2 (3)
N3—C15—C16—C170.9 (5)C17—N4—Pd2—Pd1−112.8 (3)
C14—C15—C16—C17−178.7 (5)N3—N4—Pd2—Pd180.5 (3)
C15—C16—C17—N4−0.4 (5)Pd1—Cl4—Pd2—Cl2151.71 (5)
C15—C16—C17—C18178.1 (5)Pd1—Cl4—Pd2—Cl3−28.24 (4)
C3—C2—N1—N20.9 (5)Pd1—Cl3—Pd2—N4−153.33 (10)
C1—C2—N1—N2−178.2 (5)Pd1—Cl3—Pd2—Cl427.80 (4)
C3—C2—N1—C6172.8 (4)N2—Pd1—Pd2—N4−4.1 (2)
C1—C2—N1—C6−6.3 (7)Cl1—Pd1—Pd2—N4−144.43 (15)
C7—C6—N1—C2−107.5 (5)Cl4—Pd1—Pd2—N4177.72 (15)
C7—C6—N1—N263.6 (5)Cl3—Pd1—Pd2—N437.97 (14)
C3—C4—N2—N12.0 (5)N2—Pd1—Pd2—Cl2139.48 (15)
C5—C4—N2—N1−178.7 (4)Cl1—Pd1—Pd2—Cl2−0.88 (7)
C3—C4—N2—Pd1163.6 (3)Cl4—Pd1—Pd2—Cl2−38.73 (7)
C5—C4—N2—Pd1−17.1 (6)Cl3—Pd1—Pd2—Cl2−178.48 (7)
C2—N1—N2—C4−1.9 (4)N2—Pd1—Pd2—Cl4178.21 (15)
C6—N1—N2—C4−174.6 (3)Cl1—Pd1—Pd2—Cl437.85 (7)
C2—N1—N2—Pd1−164.5 (3)Cl3—Pd1—Pd2—Cl4−139.75 (6)
C6—N1—N2—Pd122.7 (4)N2—Pd1—Pd2—Cl3−42.04 (14)
C16—C15—N3—N4−1.1 (5)Cl1—Pd1—Pd2—Cl3177.61 (6)
C14—C15—N3—N4178.5 (4)Cl4—Pd1—Pd2—Cl3139.75 (7)
C16—C15—N3—C13−174.8 (4)C19—C20—C21—C22−178.1 (9)
C14—C15—N3—C134.9 (7)C25—C20—C21—C220.3 (14)
C11—C13—N3—C15105.7 (5)C20—C21—C22—C230.0 (16)
C11—C13—N3—N4−67.5 (4)C21—C22—C23—C240.1 (15)
C16—C17—N4—N3−0.3 (5)C22—C23—C24—C25−0.6 (13)
C18—C17—N4—N3−178.9 (4)C23—C24—C25—C200.9 (12)
C16—C17—N4—Pd2−169.0 (3)C21—C20—C25—C24−0.8 (12)
C18—C17—N4—Pd212.3 (6)C19—C20—C25—C24177.8 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H16···Cg1i0.932.933.802 (6)157

Symmetry codes: (i) x+1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2189).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Guzei, I. A., Li, K., Bikzhanova, G. A., Darkwa, J. & Mapolie, S. F. (2003). Dalton Trans. pp. 715–717.
  • Hartshorn, C. M. & Steel, P. J. (1995). J. Aust. Chem.48, 1587–1591.
  • Hartshorn, C. M. & Steel, P. J. (1997). Chem. Commun. pp. 541–542.
  • Hartshorn, C. M. & Steel, P. J. (1998). Organometallics, 17, 3487–3496.
  • Motsoane, N. M., Guzei, I. A. & Darkwa, J. (2007). Z. Naturforsch. Teil B, 62, 323–330.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yen, S. K., Koh, L. L., Hahn, F. E., Huynh, H. V. & Hor, T. S. A. (2006). Organometallics, 25, 5112–5118.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography