PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o815.
Published online 2009 March 25. doi:  10.1107/S1600536809009532
PMCID: PMC2969089

Tetra-n-propyl­ammonium chloride monohydrate

Abstract

The crystal structure of the title salt hydrate, C12H28N+·Cl·H2O, consists of non-inter­acting cations and anions. The water mol­ecule forms hydrogen bonds to two chloride ions, about a center of inversion, generating a planar eight-membered {(...)H—O—H(...)Cl}2 ring.

Related literature

For the corresponding undecahydrated fluoride, see: Lipkowski et al. (1992 [triangle], 1997 [triangle]). For the anhydrous bromide, see: Zalkin (1957 [triangle]). For the anhydrous iodide, see: Yoshida et al. (1994 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-65-0o815-scheme1.jpg

Experimental

Crystal data

  • C12H28N+·Cl·H2O
  • M r = 239.82
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o815-efi1.jpg
  • a = 8.4228 (2) Å
  • b = 17.4383 (4) Å
  • c = 10.6885 (2) Å
  • β = 97.892 (1)°
  • V = 1555.05 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 295 K
  • 0.60 × 0.40 × 0.35 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.769, T max = 1.000 (expected range = 0.710–0.923)
  • 9762 measured reflections
  • 3562 independent reflections
  • 2719 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.150
  • S = 1.02
  • 3562 reflections
  • 144 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809009532/tk2397sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009532/tk2397Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Beijing Normal University and the University of Malaya for supporting this study.

supplementary crystallographic information

Experimental

The salt was one of the possible products of the reaction of tetra-n-propylammonium hydroxide, guanidnium chloride and 1,3,5-tri(4-carboxyphenyl)benzene in a water/ethanol mixture. The other products were not identified.

Refinement

Carbon and nitrogen-bound H-atoms were placed in calculated positions (C—H 0.96–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.85±0.01 Å and H···H 1.39±0.01 Å; their Uiso values were refined.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of the asymmetric unit of the title compound and its centrosymmetric mate; displacement ellipsoids are set at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Dashed lines denote ...

Crystal data

C12H28N+·Cl·H2OF(000) = 536
Mr = 239.82Dx = 1.024 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3424 reflections
a = 8.4228 (2) Åθ = 2.3–27.8°
b = 17.4383 (4) ŵ = 0.23 mm1
c = 10.6885 (2) ÅT = 295 K
β = 97.892 (1)°Block, colorless
V = 1555.05 (6) Å30.60 × 0.40 × 0.35 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer3562 independent reflections
Radiation source: fine-focus sealed tube2719 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.769, Tmax = 1.000k = −22→15
9762 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.08P)2 + 0.2641P] where P = (Fo2 + 2Fc2)/3
3562 reflections(Δ/σ)max = 0.001
144 parametersΔρmax = 0.30 e Å3
3 restraintsΔρmin = −0.26 e Å3

Special details

Experimental. A somewhat large crystal was used in the measurements, but this does not seem to have had an adverse efffect on the quality of the diffraction data.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.49841 (5)0.65518 (2)0.49054 (4)0.06695 (19)
O10.7153 (2)0.50593 (9)0.57075 (19)0.0885 (5)
H110.661 (3)0.5471 (8)0.553 (2)0.116 (9)*
H120.655 (3)0.4680 (9)0.543 (3)0.148 (13)*
N10.00272 (15)0.67045 (7)0.32316 (12)0.0479 (3)
C10.11887 (19)0.63243 (9)0.24594 (14)0.0509 (4)
H1A0.22550.65220.27420.061*
H1B0.12050.57790.26380.061*
C20.0833 (3)0.64325 (11)0.10428 (16)0.0693 (5)
H2A−0.02200.62270.07380.083*
H2B0.08310.69750.08430.083*
C30.2080 (3)0.60277 (16)0.0399 (2)0.0971 (8)
H3A0.18550.6107−0.04960.146*
H3B0.20580.54890.05790.146*
H3C0.31210.62300.07050.146*
C4−0.1683 (2)0.64589 (12)0.27918 (17)0.0646 (5)
H4A−0.23670.66780.33580.077*
H4B−0.20120.66730.19590.077*
C5−0.1959 (3)0.56022 (15)0.2729 (2)0.0900 (7)
H5A−0.17340.53840.35690.108*
H5B−0.12400.53680.22040.108*
C6−0.3680 (3)0.5438 (2)0.2183 (3)0.1355 (14)
H6A−0.38510.48940.21460.203*
H6B−0.38930.56490.13470.203*
H6C−0.43860.56670.27080.203*
C70.0544 (2)0.64638 (9)0.45924 (14)0.0516 (4)
H7A0.03470.59180.46590.062*
H7B0.16920.65420.47870.062*
C8−0.0258 (2)0.68710 (12)0.55843 (16)0.0659 (5)
H8A−0.14080.67910.54240.079*
H8B−0.00520.74180.55560.079*
C90.0402 (3)0.65545 (14)0.68748 (19)0.0851 (7)
H9A−0.01140.68040.75110.128*
H9B0.15360.66470.70360.128*
H9C0.02030.60130.68940.128*
C100.0095 (2)0.75695 (9)0.30981 (17)0.0585 (4)
H10A−0.02430.77010.22200.070*
H10B−0.06710.77950.35900.070*
C110.1705 (3)0.79260 (11)0.3505 (2)0.0802 (6)
H11A0.24440.77680.29330.096*
H11B0.21220.77460.43450.096*
C120.1596 (3)0.87896 (12)0.3513 (2)0.0921 (7)
H12A0.26380.90020.37820.138*
H12B0.08730.89470.40850.138*
H12C0.12070.89690.26780.138*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0595 (3)0.0543 (3)0.0819 (3)0.00883 (18)−0.0084 (2)−0.0134 (2)
O10.0763 (10)0.0649 (10)0.1177 (13)0.0160 (8)−0.0101 (9)0.0075 (9)
N10.0450 (7)0.0476 (7)0.0500 (7)0.0069 (5)0.0023 (5)0.0061 (5)
C10.0534 (8)0.0449 (8)0.0543 (8)0.0083 (7)0.0067 (7)0.0053 (6)
C20.0840 (13)0.0695 (12)0.0544 (9)0.0188 (10)0.0100 (9)0.0099 (8)
C30.125 (2)0.1048 (18)0.0659 (12)0.0372 (15)0.0271 (13)0.0045 (12)
C40.0482 (9)0.0874 (13)0.0561 (9)−0.0014 (8)−0.0001 (7)−0.0002 (8)
C50.0818 (14)0.0948 (17)0.0936 (15)−0.0340 (12)0.0128 (12)−0.0136 (12)
C60.099 (2)0.207 (4)0.103 (2)−0.078 (2)0.0222 (16)−0.055 (2)
C70.0525 (8)0.0511 (9)0.0495 (8)0.0052 (7)0.0011 (6)0.0064 (6)
C80.0613 (10)0.0782 (12)0.0572 (10)0.0087 (9)0.0040 (8)−0.0026 (9)
C90.0846 (15)0.1143 (19)0.0561 (10)0.0104 (12)0.0080 (10)0.0030 (11)
C100.0639 (10)0.0469 (9)0.0645 (9)0.0174 (7)0.0082 (8)0.0082 (7)
C110.0746 (13)0.0472 (10)0.1188 (17)0.0000 (9)0.0133 (12)0.0074 (10)
C120.133 (2)0.0500 (11)0.0923 (15)0.0012 (12)0.0120 (14)−0.0009 (10)

Geometric parameters (Å, °)

O1—H110.858 (10)C6—H6A0.9600
O1—H120.859 (10)C6—H6B0.9600
N1—C41.514 (2)C6—H6C0.9600
N1—C11.517 (2)C7—C81.511 (2)
N1—C101.517 (2)C7—H7A0.9700
N1—C71.5189 (18)C7—H7B0.9700
C1—C21.514 (2)C8—C91.519 (3)
C1—H1A0.9700C8—H8A0.9700
C1—H1B0.9700C8—H8B0.9700
C2—C31.508 (3)C9—H9A0.9600
C2—H2A0.9700C9—H9B0.9600
C2—H2B0.9700C9—H9C0.9600
C3—H3A0.9600C10—C111.501 (3)
C3—H3B0.9600C10—H10A0.9700
C3—H3C0.9600C10—H10B0.9700
C4—C51.512 (3)C11—C121.509 (3)
C4—H4A0.9700C11—H11A0.9700
C4—H4B0.9700C11—H11B0.9700
C5—C61.514 (3)C12—H12A0.9600
C5—H5A0.9700C12—H12B0.9600
C5—H5B0.9700C12—H12C0.9600
H11—O1—H12107.3 (15)C5—C6—H6C109.5
C4—N1—C1111.37 (13)H6A—C6—H6C109.5
C4—N1—C10107.36 (12)H6B—C6—H6C109.5
C1—N1—C10110.37 (12)C8—C7—N1116.43 (13)
C4—N1—C7110.76 (12)C8—C7—H7A108.2
C1—N1—C7106.19 (11)N1—C7—H7A108.2
C10—N1—C7110.82 (12)C8—C7—H7B108.2
C2—C1—N1115.83 (13)N1—C7—H7B108.2
C2—C1—H1A108.3H7A—C7—H7B107.3
N1—C1—H1A108.3C7—C8—C9108.86 (16)
C2—C1—H1B108.3C7—C8—H8A109.9
N1—C1—H1B108.3C9—C8—H8A109.9
H1A—C1—H1B107.4C7—C8—H8B109.9
C3—C2—C1110.06 (15)C9—C8—H8B109.9
C3—C2—H2A109.6H8A—C8—H8B108.3
C1—C2—H2A109.6C8—C9—H9A109.5
C3—C2—H2B109.6C8—C9—H9B109.5
C1—C2—H2B109.6H9A—C9—H9B109.5
H2A—C2—H2B108.2C8—C9—H9C109.5
C2—C3—H3A109.5H9A—C9—H9C109.5
C2—C3—H3B109.5H9B—C9—H9C109.5
H3A—C3—H3B109.5C11—C10—N1115.39 (13)
C2—C3—H3C109.5C11—C10—H10A108.4
H3A—C3—H3C109.5N1—C10—H10A108.4
H3B—C3—H3C109.5C11—C10—H10B108.4
C5—C4—N1115.29 (16)N1—C10—H10B108.4
C5—C4—H4A108.5H10A—C10—H10B107.5
N1—C4—H4A108.5C10—C11—C12111.21 (18)
C5—C4—H4B108.5C10—C11—H11A109.4
N1—C4—H4B108.5C12—C11—H11A109.4
H4A—C4—H4B107.5C10—C11—H11B109.4
C4—C5—C6109.7 (2)C12—C11—H11B109.4
C4—C5—H5A109.7H11A—C11—H11B108.0
C6—C5—H5A109.7C11—C12—H12A109.5
C4—C5—H5B109.7C11—C12—H12B109.5
C6—C5—H5B109.7H12A—C12—H12B109.5
H5A—C5—H5B108.2C11—C12—H12C109.5
C5—C6—H6A109.5H12A—C12—H12C109.5
C5—C6—H6B109.5H12B—C12—H12C109.5
H6A—C6—H6B109.5
C4—N1—C1—C254.78 (19)C4—N1—C7—C8−68.64 (19)
C10—N1—C1—C2−64.37 (18)C1—N1—C7—C8170.30 (15)
C7—N1—C1—C2175.45 (15)C10—N1—C7—C850.42 (19)
N1—C1—C2—C3179.85 (18)N1—C7—C8—C9179.81 (16)
C1—N1—C4—C553.15 (19)C4—N1—C10—C11179.35 (16)
C10—N1—C4—C5174.08 (16)C1—N1—C10—C11−59.08 (19)
C7—N1—C4—C5−64.80 (19)C7—N1—C10—C1158.3 (2)
N1—C4—C5—C6−175.66 (17)N1—C10—C11—C12−171.82 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H11···Cl10.86 (1)2.37 (1)3.227 (2)175 (2)
O1—H12···Cl1i0.86 (1)2.51 (1)3.352 (2)168 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2397).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lipkowski, J., Luboradzki, R. & Udachin, K. A. (1997). Supramol. Chem.8, 281–286.
  • Lipkowski, J., Luboradzki, R., Udachin, K. & Dyadin, Y. (1992). J. Inclusion Phenom.13, 295.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.
  • Yoshida, T., Nagata, K., Yasuniwa, M., Yoshimatsu, M. & Wunderlich, B. (1994). Acta Cryst. C50, 1758–1760.
  • Zalkin, A. (1957). Acta Cryst.10, 557–560.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography