PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): i25.
Published online 2009 March 6. doi:  10.1107/S1600536809007211
PMCID: PMC2969084

Gadolinium scandium germanide, Gd2Sc3Ge4

Abstract

Gd2Sc3Ge4 adopts the ortho­rhom­bic Pu5Rh4-type structure. The crystal structure contains six sites in the asymmetric unit: two sites are statistically occupied by rare-earth atoms with Gd:Sc ratios of 0.967 (4):0.033 (4) and 0.031 (3):0.969 (3), one site (.m. symmetry) is occupied by Sc atoms, and three distinct sites (two of which with .m. symmetry) are occupied by Ge atoms. The rare-earth atoms form two-dimensional slabs with Ge atoms occupying the trigonal-prismatic voids.

Related literature

The title compound adopts the Pu5Rh4-type structure (Cromer, 1977 [triangle]). For Ge(...)Ge distances, see: Mozharivskyj et al. (2003 [triangle]); Holtzberg et al. (1967 [triangle]); Smith et al. (1967 [triangle]). For atomic radii. see: Shannon (1976 [triangle]). For the Hamilton significance test, see: Hamilton (1965 [triangle]). For a mixed rare-earth system, see: Misra & Miller (2008 [triangle]).

Experimental

Crystal data

  • Gd2Sc3Ge4
  • M r = 739.74
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-00i25-efi1.jpg
  • a = 7.2445 (13) Å
  • b = 14.101 (3) Å
  • c = 7.4930 (14) Å
  • V = 765.4 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 34.91 mm−1
  • T = 298 K
  • 0.06 × 0.05 × 0.01 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.127, T max = 0.705
  • 6182 measured reflections
  • 958 independent reflections
  • 816 reflections with I > 2s(I)
  • R int = 0.070

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.066
  • S = 1.05
  • 958 reflections
  • 49 parameters
  • Δρmax = 2.20 e Å−3
  • Δρmin = −1.44 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809007211/mg2062sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007211/mg2062Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was carried out at the Ames Laboratory, which is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was supported by the Materials Sciences Divison of the Office of Basic Energy Sciences of the US Department of Energy.

supplementary crystallographic information

Comment

Continuing our efforts in mixed rare-earth systems bearing the formula (R1-xR'x)5T4, where T = Si, Ge, Ga, Sn, we have studied the effect of substitution of Gd by nonmagnetic Sc. Gd2Sc3Ge4 crystallizes in the orthorhombic Pu5Rh4-type structure (Cromer, 1977). Two 32434 nets built up of Gd and Sc atoms are placed over one another to form two-dimensional slabs with additional Sc atoms in pseudo-cubic coordination and Ge atoms in trigonal prismatic voids (Fig. 1).

The two metal sites situated at the edges of the cube (M1 and M2) exhibit mixed site occupancies, with Gd (the larger atom; Shannon, 1976) having a preference for the M1 site and Sc (the smaller atom; Shannon, 1976) having a preference for the M2 site. The M3 site is completely occupied by Sc atom. This disordered model which introduces two additional refinement parameters yields a statistically significant improvement over various ordered models, at the 0.5% significance level according to a Hamilton's significance test on the crystallographic R factor (Hamilton, 1965).

The Ge1–Ge1 distances are intermediate between those in Gd5Ga2Ge2 [2.741 (1) Å; Gd5Si4-type (Holtzberg et al., 1967)] and Gd5Ga0.7Ge3.3 [3.461 (5) Å; Sm5Ge4-type (Smith et al., 1967)] (Mozharivskyj et al., 2003).

Experimental

Gd2Sc3Ge4 was prepared by arc-melting pieces of the constituent elements (Gd, 99.99 wt. %, Materials Preparation Center, Ames Laboratory; Sc, 99.99 wt. %, Materials Preparation Center, Ames Laboratory; Ge, 99.9999 wt. %, Alfa Aesar) in an argon atmosphere on a water-cooled copper hearth. The ingot had a total weight of ca. 0.8 g and was remelted six times with the button being turned over after each melting to ensure homogeneity. Weight losses during melting were less than 0.1 wt. %.

Refinement

A disordered model works best compared to an ordered model and this has been confirmed by a Hamilton's significance test on the crystallographic R factor. We formulated four hypotheses to be tested: (A) M1 site is all Gd, M2 site is all Sc; (B) M1 site is all Gd, M2 site is mixed with Gd and Sc; (C) M1 site is mixed with Gd and Sc, M1 site is all Sc; and (D) both M1 and M2 sites are mixed with Gd and Sc. The number of parameters refined in the four cases were mA = 47, mB = 48, mC = 48, and mD = 49. There were 958 reflections. The R factors achieved were RA = 0.0333, RB = 0.0318, RC = 0.0326, and RD = 0.0313. We could reject hypotheses (A), (B), and (C) at the 0.5% level of significance corresponding to hypothesis (D).

Figures

Fig. 1.
View of Gd2Sc3Ge4 along [001], with displacement ellipsoids drawn at the 99 % probability level.

Crystal data

Gd2Sc3Ge4F(000) = 1276
Mr = 739.74Dx = 6.419 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 6182 reflections
a = 7.2445 (13) Åθ = 3.1–27.8°
b = 14.101 (3) ŵ = 34.91 mm1
c = 7.4930 (14) ÅT = 298 K
V = 765.4 (2) Å3Plate, grey
Z = 40.06 × 0.05 × 0.01 mm

Data collection

Bruker SMART CCD area-detector diffractometer958 independent reflections
Radiation source: fine-focus sealed tube816 reflections with I > 2s(I)
graphiteRint = 0.070
[var phi] and ω scansθmax = 28.2°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −9→9
Tmin = 0.127, Tmax = 0.705k = −17→18
6182 measured reflectionsl = −9→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031w = 1/[σ2(Fo2) + (0.0171P)2 + 3.8343P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.066(Δ/σ)max = 0.001
S = 1.05Δρmax = 2.20 e Å3
958 reflectionsΔρmin = −1.44 e Å3
49 parametersExtinction correction: SHELXL97 (Bruker, 2002), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00245 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Gd10.99788 (5)0.40395 (3)0.17641 (5)0.00746 (16)0.967 (4)
Sc10.99788 (5)0.40395 (3)0.17641 (5)0.00746 (16)0.033 (4)
Gd20.6602 (2)0.37594 (9)0.83229 (17)0.0081 (5)0.031 (3)
Sc20.6602 (2)0.37594 (9)0.83229 (17)0.0081 (5)0.969 (3)
Sc30.1761 (3)0.75000.5005 (3)0.0072 (4)
Ge10.82216 (12)0.45888 (6)0.54068 (11)0.0091 (2)
Ge20.03997 (16)0.75000.12561 (16)0.0081 (3)
Ge30.30680 (16)0.75000.86322 (15)0.0081 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Gd10.0064 (2)0.0085 (2)0.0074 (2)0.00025 (14)0.00024 (15)0.00013 (15)
Sc10.0064 (2)0.0085 (2)0.0074 (2)0.00025 (14)0.00024 (15)0.00013 (15)
Gd20.0095 (8)0.0083 (7)0.0065 (8)0.0000 (5)0.0006 (5)0.0001 (5)
Sc20.0095 (8)0.0083 (7)0.0065 (8)0.0000 (5)0.0006 (5)0.0001 (5)
Sc30.0067 (10)0.0079 (10)0.0072 (10)0.0000.0000 (8)0.000
Ge10.0113 (5)0.0086 (4)0.0073 (4)0.0011 (3)−0.0009 (3)0.0008 (3)
Ge20.0068 (6)0.0098 (6)0.0077 (6)0.0000.0012 (5)0.000
Ge30.0085 (6)0.0082 (6)0.0077 (6)0.000−0.0008 (5)0.000

Geometric parameters (Å, °)

Gd1—Ge3i2.9452 (9)Sc3—Gd2xiv3.268 (2)
Gd1—Ge1ii2.9605 (10)Sc3—Sc2xii3.283 (2)
Gd1—Ge13.1097 (10)Sc3—Gd2iii3.283 (2)
Gd1—Ge3iii3.1101 (10)Ge1—Sc2i2.8070 (16)
Gd1—Ge2iv3.1478 (10)Ge1—Gd2i2.8070 (16)
Gd1—Ge1v3.1519 (10)Ge1—Sc2xv2.8759 (17)
Gd1—Ge1i3.1861 (10)Ge1—Gd2xv2.8759 (17)
Gd1—Sc3i3.4681 (17)Ge1—Ge1v2.8907 (17)
Gd1—Sc3iii3.4877 (17)Ge1—Gd1xvi2.9605 (10)
Gd1—Sc2i3.5083 (15)Ge1—Sc1xvi2.9605 (10)
Gd1—Gd2i3.5083 (15)Ge1—Sc3iii2.9614 (10)
Gd1—Gd2vi3.5762 (15)Ge2—Ge3vi2.7572 (17)
Gd2—Ge12.7421 (15)Ge2—Sc2xiv2.7668 (16)
Gd2—Ge2vii2.7668 (16)Ge2—Gd2xiv2.7668 (16)
Gd2—Ge1viii2.8070 (16)Ge2—Sc2xiii2.7668 (16)
Gd2—Ge2iii2.8234 (17)Ge2—Gd2xiii2.7668 (16)
Gd2—Ge1ix2.8759 (17)Ge2—Sc3xvi2.800 (2)
Gd2—Ge3x2.9010 (16)Ge2—Sc2xii2.8234 (17)
Gd2—Sc3vii3.268 (2)Ge2—Gd2xii2.8234 (17)
Gd2—Sc3iii3.283 (2)Ge2—Gd2iii2.8234 (17)
Gd2—Gd1viii3.5083 (15)Ge2—Sc2iii2.8234 (17)
Gd2—Sc1viii3.5083 (15)Ge2—Sc1iv3.1478 (10)
Gd2—Sc2xi3.552 (3)Ge3—Ge2xvii2.7572 (17)
Gd2—Gd2xi3.552 (3)Ge3—Sc3xv2.864 (2)
Sc3—Ge2ii2.800 (2)Ge3—Sc2xviii2.9010 (16)
Sc3—Ge3ix2.864 (2)Ge3—Gd2xviii2.9010 (16)
Sc3—Ge32.878 (2)Ge3—Sc2x2.9010 (16)
Sc3—Ge1xii2.9614 (10)Ge3—Gd2x2.9010 (16)
Sc3—Ge1iii2.9614 (10)Ge3—Gd1xix2.9452 (9)
Sc3—Ge22.977 (2)Ge3—Sc1xix2.9452 (9)
Sc3—Sc2xiii3.268 (2)Ge3—Gd1viii2.9452 (9)
Sc3—Gd2xiii3.268 (2)Ge3—Sc1viii2.9452 (9)
Sc3—Sc2xiv3.268 (2)Ge3—Gd1iii3.1101 (10)
Ge3i—Gd1—Ge1ii94.17 (3)Ge3ix—Sc3—Gd2iii127.47 (6)
Ge3i—Gd1—Ge187.88 (3)Ge3—Sc3—Gd2iii126.76 (6)
Ge1ii—Gd1—Ge1137.90 (3)Ge1xii—Sc3—Gd2iii117.23 (7)
Ge3i—Gd1—Ge3iii82.64 (2)Ge1iii—Sc3—Gd2iii51.79 (3)
Ge1ii—Gd1—Ge3iii133.89 (3)Ge2—Sc3—Gd2iii53.35 (4)
Ge1—Gd1—Ge3iii88.12 (3)Sc2xiii—Sc3—Gd2iii71.49 (4)
Ge3i—Gd1—Ge2iv82.83 (3)Gd2xiii—Sc3—Gd2iii71.49 (4)
Ge1ii—Gd1—Ge2iv81.64 (3)Sc2xiv—Sc3—Gd2iii105.69 (6)
Ge1—Gd1—Ge2iv140.09 (3)Gd2xiv—Sc3—Gd2iii105.69 (6)
Ge3iii—Gd1—Ge2iv52.28 (3)Sc2xii—Sc3—Gd2iii65.50 (6)
Ge3i—Gd1—Ge1v86.21 (3)Gd2—Ge1—Sc2i144.75 (4)
Ge1ii—Gd1—Ge1v83.153 (17)Gd2—Ge1—Gd2i144.75 (4)
Ge1—Gd1—Ge1v54.98 (3)Sc2i—Ge1—Gd2i0.00 (5)
Ge3iii—Gd1—Ge1v141.82 (3)Gd2—Ge1—Sc2xv85.83 (4)
Ge2iv—Gd1—Ge1v160.52 (3)Sc2i—Ge1—Sc2xv118.86 (4)
Ge3i—Gd1—Ge1i161.59 (3)Gd2i—Ge1—Sc2xv118.86 (4)
Ge1ii—Gd1—Ge1i104.08 (3)Gd2—Ge1—Gd2xv85.83 (4)
Ge1—Gd1—Ge1i80.275 (17)Sc2i—Ge1—Gd2xv118.86 (4)
Ge3iii—Gd1—Ge1i82.92 (3)Gd2i—Ge1—Gd2xv118.86 (4)
Ge2iv—Gd1—Ge1i97.23 (3)Sc2xv—Ge1—Gd2xv0.00 (7)
Ge1v—Gd1—Ge1i98.23 (3)Gd2—Ge1—Ge1v136.10 (5)
Ge3i—Gd1—Sc3i52.57 (4)Sc2i—Ge1—Ge1v60.61 (4)
Ge1ii—Gd1—Sc3i54.16 (3)Gd2i—Ge1—Ge1v60.61 (4)
Ge1—Gd1—Sc3i140.20 (4)Sc2xv—Ge1—Ge1v58.26 (4)
Ge3iii—Gd1—Sc3i90.58 (3)Gd2xv—Ge1—Ge1v58.26 (4)
Ge2iv—Gd1—Sc3i49.79 (4)Gd2—Ge1—Gd1xvi89.24 (4)
Ge1v—Gd1—Sc3i110.99 (4)Sc2i—Ge1—Gd1xvi86.99 (4)
Ge1i—Gd1—Sc3i138.95 (4)Gd2i—Ge1—Gd1xvi86.99 (4)
Ge3i—Gd1—Sc3iii52.04 (4)Sc2xv—Ge1—Gd1xvi138.69 (4)
Ge1ii—Gd1—Sc3iii146.21 (4)Gd2xv—Ge1—Gd1xvi138.69 (4)
Ge1—Gd1—Sc3iii52.97 (3)Ge1v—Ge1—Gd1xvi134.14 (5)
Ge3iii—Gd1—Sc3iii51.34 (4)Gd2—Ge1—Sc1xvi89.24 (4)
Ge2iv—Gd1—Sc3iii92.20 (3)Sc2i—Ge1—Sc1xvi86.99 (4)
Ge1v—Gd1—Sc3iii93.70 (4)Gd2i—Ge1—Sc1xvi86.99 (4)
Ge1i—Gd1—Sc3iii109.66 (4)Sc2xv—Ge1—Sc1xvi138.69 (4)
Sc3i—Gd1—Sc3iii96.92 (4)Gd2xv—Ge1—Sc1xvi138.69 (4)
Ge3i—Gd1—Sc2i130.59 (3)Ge1v—Ge1—Sc1xvi134.14 (5)
Ge1ii—Gd1—Sc2i102.15 (3)Gd1xvi—Ge1—Sc1xvi0.000 (17)
Ge1—Gd1—Sc2i49.75 (3)Gd2—Ge1—Sc3iii70.16 (5)
Ge3iii—Gd1—Sc2i114.68 (3)Sc2i—Ge1—Sc3iii140.10 (6)
Ge2iv—Gd1—Sc2i145.18 (3)Gd2i—Ge1—Sc3iii140.10 (6)
Ge1v—Gd1—Sc2i50.82 (3)Sc2xv—Ge1—Sc3iii68.07 (5)
Ge1i—Gd1—Sc2i48.06 (3)Gd2xv—Ge1—Sc3iii68.07 (5)
Sc3i—Gd1—Sc2i154.50 (3)Ge1v—Ge1—Sc3iii111.92 (6)
Sc3iii—Gd1—Sc2i101.62 (3)Gd1xvi—Ge1—Sc3iii71.70 (5)
Ge3i—Gd1—Gd2i130.59 (3)Sc1xvi—Ge1—Sc3iii71.70 (5)
Ge1ii—Gd1—Gd2i102.15 (3)Gd2—Ge1—Gd1140.21 (4)
Ge1—Gd1—Gd2i49.75 (3)Sc2i—Ge1—Gd172.53 (3)
Ge3iii—Gd1—Gd2i114.68 (3)Gd2i—Ge1—Gd172.53 (3)
Ge2iv—Gd1—Gd2i145.18 (3)Sc2xv—Ge1—Gd180.83 (4)
Ge1v—Gd1—Gd2i50.82 (3)Gd2xv—Ge1—Gd180.83 (4)
Ge1i—Gd1—Gd2i48.06 (3)Ge1v—Ge1—Gd163.25 (3)
Sc3i—Gd1—Gd2i154.50 (3)Gd1xvi—Ge1—Gd177.14 (2)
Sc3iii—Gd1—Gd2i101.62 (3)Sc1xvi—Ge1—Gd177.14 (2)
Sc2i—Gd1—Gd2i0.00 (4)Sc3iii—Ge1—Gd170.08 (4)
Ge3i—Gd1—Gd2vi126.15 (3)Ge3vi—Ge2—Sc2xiv140.05 (3)
Ge1ii—Gd1—Gd2vi100.11 (3)Ge3vi—Ge2—Gd2xiv140.05 (3)
Ge1—Gd1—Gd2vi112.35 (3)Sc2xiv—Ge2—Gd2xiv0.00 (5)
Ge3iii—Gd1—Gd2vi50.84 (3)Ge3vi—Ge2—Sc2xiii140.05 (3)
Ge2iv—Gd1—Gd2vi49.15 (3)Sc2xiv—Ge2—Sc2xiii79.86 (7)
Ge1v—Gd1—Gd2vi146.68 (3)Gd2xiv—Ge2—Sc2xiii79.86 (7)
Ge1i—Gd1—Gd2vi48.63 (3)Ge3vi—Ge2—Gd2xiii140.05 (3)
Sc3i—Gd1—Gd2vi97.04 (4)Sc2xiv—Ge2—Gd2xiii79.86 (7)
Sc3iii—Gd1—Gd2vi100.63 (4)Gd2xiv—Ge2—Gd2xiii79.86 (7)
Sc2i—Gd1—Gd2vi96.57 (3)Sc2xiii—Ge2—Gd2xiii0.00 (5)
Gd2i—Gd1—Gd2vi96.57 (3)Ge3vi—Ge2—Sc3xvi114.80 (6)
Ge1—Gd2—Ge2vii92.98 (5)Sc2xiv—Ge2—Sc3xvi72.27 (5)
Ge1—Gd2—Ge1viii94.01 (4)Gd2xiv—Ge2—Sc3xvi72.27 (5)
Ge2vii—Gd2—Ge1viii150.21 (6)Sc2xiii—Ge2—Sc3xvi72.27 (5)
Ge1—Gd2—Ge2iii91.61 (5)Gd2xiii—Ge2—Sc3xvi72.27 (5)
Ge2vii—Gd2—Ge2iii93.56 (4)Ge3vi—Ge2—Sc2xii62.63 (4)
Ge1viii—Gd2—Ge2iii115.13 (5)Sc2xiv—Ge2—Sc2xii86.39 (4)
Ge1—Gd2—Ge1ix117.05 (5)Gd2xiv—Ge2—Sc2xii86.39 (4)
Ge2vii—Gd2—Ge1ix90.00 (5)Sc2xiii—Ge2—Sc2xii138.11 (5)
Ge1viii—Gd2—Ge1ix61.14 (4)Gd2xiii—Ge2—Sc2xii138.11 (5)
Ge2iii—Gd2—Ge1ix150.92 (6)Sc3xvi—Ge2—Sc2xii139.64 (4)
Ge1—Gd2—Ge3x148.48 (6)Ge3vi—Ge2—Gd2xii62.63 (4)
Ge2vii—Gd2—Ge3x95.19 (5)Sc2xiv—Ge2—Gd2xii86.39 (4)
Ge1viii—Gd2—Ge3x93.83 (5)Gd2xiv—Ge2—Gd2xii86.39 (4)
Ge2iii—Gd2—Ge3x57.57 (4)Sc2xiii—Ge2—Gd2xii138.11 (5)
Ge1ix—Gd2—Ge3x93.37 (5)Gd2xiii—Ge2—Gd2xii138.11 (5)
Ge1—Gd2—Sc3vii149.10 (6)Sc3xvi—Ge2—Gd2xii139.64 (4)
Ge2vii—Gd2—Sc3vii58.41 (5)Sc2xii—Ge2—Gd2xii0.00 (7)
Ge1viii—Gd2—Sc3vii105.69 (5)Ge3vi—Ge2—Gd2iii62.63 (4)
Ge2iii—Gd2—Sc3vii100.88 (5)Sc2xiv—Ge2—Gd2iii138.11 (5)
Ge1ix—Gd2—Sc3vii57.21 (4)Gd2xiv—Ge2—Gd2iii138.11 (5)
Ge3x—Gd2—Sc3vii54.94 (5)Sc2xiii—Ge2—Gd2iii86.39 (4)
Ge1—Gd2—Sc3iii58.06 (4)Gd2xiii—Ge2—Gd2iii86.39 (4)
Ge2vii—Gd2—Sc3iii54.33 (5)Sc3xvi—Ge2—Gd2iii139.64 (4)
Ge1viii—Gd2—Sc3iii148.75 (6)Sc2xii—Ge2—Gd2iii77.95 (6)
Ge2iii—Gd2—Sc3iii57.77 (5)Gd2xii—Ge2—Gd2iii77.95 (6)
Ge1ix—Gd2—Sc3iii141.16 (6)Ge3vi—Ge2—Sc2iii62.63 (4)
Ge3x—Gd2—Sc3iii103.67 (5)Sc2xiv—Ge2—Sc2iii138.11 (5)
Sc3vii—Gd2—Sc3iii105.56 (5)Gd2xiv—Ge2—Sc2iii138.11 (5)
Ge1—Gd2—Gd1viii59.81 (3)Sc2xiii—Ge2—Sc2iii86.39 (4)
Ge2vii—Gd2—Gd1viii102.14 (4)Gd2xiii—Ge2—Sc2iii86.39 (4)
Ge1viii—Gd2—Gd1viii57.73 (3)Sc3xvi—Ge2—Sc2iii139.64 (4)
Ge2iii—Gd2—Gd1viii147.65 (5)Sc2xii—Ge2—Sc2iii77.95 (6)
Ge1ix—Gd2—Gd1viii58.16 (3)Gd2xii—Ge2—Sc2iii77.95 (6)
Ge3x—Gd2—Gd1viii146.13 (5)Gd2iii—Ge2—Sc2iii0.00 (7)
Sc3vii—Gd2—Gd1viii111.45 (5)Ge3vi—Ge2—Sc3116.13 (6)
Sc3iii—Gd2—Gd1viii110.10 (4)Sc2xiv—Ge2—Sc369.24 (5)
Ge1—Gd2—Sc1viii59.81 (3)Gd2xiv—Ge2—Sc369.24 (5)
Ge2vii—Gd2—Sc1viii102.14 (4)Sc2xiii—Ge2—Sc369.24 (5)
Ge1viii—Gd2—Sc1viii57.73 (3)Gd2xiii—Ge2—Sc369.24 (5)
Ge2iii—Gd2—Sc1viii147.65 (5)Sc3xvi—Ge2—Sc3129.07 (7)
Ge1ix—Gd2—Sc1viii58.16 (3)Sc2xii—Ge2—Sc368.88 (5)
Ge3x—Gd2—Sc1viii146.13 (5)Gd2xii—Ge2—Sc368.88 (5)
Sc3vii—Gd2—Sc1viii111.45 (5)Gd2iii—Ge2—Sc368.88 (5)
Sc3iii—Gd2—Sc1viii110.10 (4)Sc2iii—Ge2—Sc368.88 (5)
Gd1viii—Gd2—Sc1viii0.000 (12)Ge3vi—Ge2—Sc1iv63.16 (3)
Ge1—Gd2—Sc2xi115.24 (3)Sc2xiv—Ge2—Sc1iv143.07 (5)
Ge2vii—Gd2—Sc2xi50.07 (3)Gd2xiv—Ge2—Sc1iv143.07 (5)
Ge1viii—Gd2—Sc2xi146.07 (3)Sc2xiii—Ge2—Sc1iv85.07 (3)
Ge2iii—Gd2—Sc2xi51.02 (3)Gd2xiii—Ge2—Sc1iv85.07 (3)
Ge1ix—Gd2—Sc2xi113.99 (3)Sc3xvi—Ge2—Sc1iv71.06 (4)
Ge3x—Gd2—Sc2xi52.25 (3)Sc2xii—Ge2—Sc1iv125.53 (5)
Sc3vii—Gd2—Sc2xi57.08 (3)Gd2xii—Ge2—Sc1iv125.53 (5)
Sc3iii—Gd2—Sc2xi57.25 (3)Gd2iii—Ge2—Sc1iv73.36 (3)
Gd1viii—Gd2—Sc2xi152.21 (2)Sc2iii—Ge2—Sc1iv73.36 (3)
Sc1viii—Gd2—Sc2xi152.21 (2)Sc3—Ge2—Sc1iv135.00 (2)
Ge1—Gd2—Gd2xi115.24 (3)Ge2xvii—Ge3—Sc3xv113.62 (6)
Ge2vii—Gd2—Gd2xi50.07 (3)Ge2xvii—Ge3—Sc3116.29 (7)
Ge1viii—Gd2—Gd2xi146.07 (3)Sc3xv—Ge3—Sc3130.10 (7)
Ge2iii—Gd2—Gd2xi51.02 (3)Ge2xvii—Ge3—Sc2xviii59.80 (4)
Ge1ix—Gd2—Gd2xi113.99 (3)Sc3xv—Ge3—Sc2xviii69.05 (5)
Ge3x—Gd2—Gd2xi52.25 (3)Sc3—Ge3—Sc2xviii140.34 (4)
Sc3vii—Gd2—Gd2xi57.08 (3)Ge2xvii—Ge3—Gd2xviii59.80 (4)
Sc3iii—Gd2—Gd2xi57.25 (3)Sc3xv—Ge3—Gd2xviii69.05 (5)
Gd1viii—Gd2—Gd2xi152.21 (2)Sc3—Ge3—Gd2xviii140.34 (4)
Sc1viii—Gd2—Gd2xi152.21 (2)Sc2xviii—Ge3—Gd2xviii0.00 (3)
Sc2xi—Gd2—Gd2xi0.00 (6)Ge2xvii—Ge3—Sc2x59.80 (4)
Ge2ii—Sc3—Ge3ix178.82 (9)Sc3xv—Ge3—Sc2x69.05 (5)
Ge2ii—Sc3—Ge390.52 (7)Sc3—Ge3—Sc2x140.34 (4)
Ge3ix—Sc3—Ge388.30 (6)Sc2xviii—Ge3—Sc2x75.49 (6)
Ge2ii—Sc3—Ge1xii87.76 (4)Gd2xviii—Ge3—Sc2x75.49 (6)
Ge3ix—Sc3—Ge1xii92.35 (4)Ge2xvii—Ge3—Gd2x59.80 (4)
Ge3—Sc3—Ge1xii95.56 (4)Sc3xv—Ge3—Gd2x69.05 (5)
Ge2ii—Sc3—Ge1iii87.76 (4)Sc3—Ge3—Gd2x140.34 (4)
Ge3ix—Sc3—Ge1iii92.35 (4)Sc2xviii—Ge3—Gd2x75.49 (6)
Ge3—Sc3—Ge1iii95.56 (4)Gd2xviii—Ge3—Gd2x75.49 (6)
Ge1xii—Sc3—Ge1iii168.04 (8)Sc2x—Ge3—Gd2x0.00 (4)
Ge2ii—Sc3—Ge289.64 (6)Ge2xvii—Ge3—Gd1xix132.513 (19)
Ge3ix—Sc3—Ge291.54 (7)Sc3xv—Ge3—Gd1xix73.78 (4)
Ge3—Sc3—Ge2179.85 (9)Sc3—Ge3—Gd1xix73.09 (4)
Ge1xii—Sc3—Ge284.44 (4)Sc2xviii—Ge3—Gd1xix83.28 (3)
Ge1iii—Sc3—Ge284.44 (4)Gd2xviii—Ge3—Gd1xix83.28 (3)
Ge2ii—Sc3—Sc2xiii124.88 (6)Sc2x—Ge3—Gd1xix141.76 (5)
Ge3ix—Sc3—Sc2xiii56.01 (5)Gd2x—Ge3—Gd1xix141.76 (5)
Ge3—Sc3—Sc2xiii127.54 (6)Ge2xvii—Ge3—Sc1xix132.513 (19)
Ge1xii—Sc3—Sc2xiii120.23 (7)Sc3xv—Ge3—Sc1xix73.78 (4)
Ge1iii—Sc3—Sc2xiii54.72 (4)Sc3—Ge3—Sc1xix73.09 (4)
Ge2—Sc3—Sc2xiii52.35 (4)Sc2xviii—Ge3—Sc1xix83.28 (3)
Ge2ii—Sc3—Gd2xiii124.88 (6)Gd2xviii—Ge3—Sc1xix83.28 (3)
Ge3ix—Sc3—Gd2xiii56.01 (5)Sc2x—Ge3—Sc1xix141.76 (5)
Ge3—Sc3—Gd2xiii127.54 (6)Gd2x—Ge3—Sc1xix141.76 (5)
Ge1xii—Sc3—Gd2xiii120.23 (7)Gd1xix—Ge3—Sc1xix0.000 (17)
Ge1iii—Sc3—Gd2xiii54.72 (4)Ge2xvii—Ge3—Gd1viii132.513 (19)
Ge2—Sc3—Gd2xiii52.35 (4)Sc3xv—Ge3—Gd1viii73.78 (4)
Sc2xiii—Sc3—Gd2xiii0.00 (3)Sc3—Ge3—Gd1viii73.09 (4)
Ge2ii—Sc3—Sc2xiv124.88 (6)Sc2xviii—Ge3—Gd1viii141.76 (5)
Ge3ix—Sc3—Sc2xiv56.01 (5)Gd2xviii—Ge3—Gd1viii141.76 (5)
Ge3—Sc3—Sc2xiv127.54 (6)Sc2x—Ge3—Gd1viii83.28 (3)
Ge1xii—Sc3—Sc2xiv54.72 (4)Gd2x—Ge3—Gd1viii83.28 (3)
Ge1iii—Sc3—Sc2xiv120.23 (7)Gd1xix—Ge3—Gd1viii94.96 (4)
Ge2—Sc3—Sc2xiv52.35 (4)Sc1xix—Ge3—Gd1viii94.96 (4)
Sc2xiii—Sc3—Sc2xiv65.84 (6)Ge2xvii—Ge3—Sc1viii132.513 (19)
Gd2xiii—Sc3—Sc2xiv65.84 (6)Sc3xv—Ge3—Sc1viii73.78 (4)
Ge2ii—Sc3—Gd2xiv124.88 (6)Sc3—Ge3—Sc1viii73.09 (4)
Ge3ix—Sc3—Gd2xiv56.01 (5)Sc2xviii—Ge3—Sc1viii141.76 (5)
Ge3—Sc3—Gd2xiv127.54 (6)Gd2xviii—Ge3—Sc1viii141.76 (5)
Ge1xii—Sc3—Gd2xiv54.72 (4)Sc2x—Ge3—Sc1viii83.28 (3)
Ge1iii—Sc3—Gd2xiv120.23 (7)Gd2x—Ge3—Sc1viii83.28 (3)
Ge2—Sc3—Gd2xiv52.35 (4)Gd1xix—Ge3—Sc1viii94.96 (4)
Sc2xiii—Sc3—Gd2xiv65.84 (6)Sc1xix—Ge3—Sc1viii94.96 (4)
Gd2xiii—Sc3—Gd2xiv65.84 (6)Gd1viii—Ge3—Sc1viii0.000 (17)
Sc2xiv—Sc3—Gd2xiv0.00 (3)Ge2xvii—Ge3—Gd1iii64.56 (3)
Ge2ii—Sc3—Sc2xii53.40 (4)Sc3xv—Ge3—Gd1iii134.19 (2)
Ge3ix—Sc3—Sc2xii127.47 (6)Sc3—Ge3—Gd1iii71.12 (4)
Ge3—Sc3—Sc2xii126.76 (6)Sc2xviii—Ge3—Gd1iii124.12 (5)
Ge1xii—Sc3—Sc2xii51.79 (3)Gd2xviii—Ge3—Gd1iii124.12 (5)
Ge1iii—Sc3—Sc2xii117.23 (7)Sc2x—Ge3—Gd1iii72.92 (3)
Ge2—Sc3—Sc2xii53.35 (4)Gd2x—Ge3—Gd1iii72.92 (3)
Sc2xiii—Sc3—Sc2xii105.69 (6)Gd1xix—Ge3—Gd1iii144.10 (4)
Gd2xiii—Sc3—Sc2xii105.69 (6)Sc1xix—Ge3—Gd1iii144.10 (4)
Sc2xiv—Sc3—Sc2xii71.49 (4)Gd1viii—Ge3—Gd1iii77.357 (18)
Gd2xiv—Sc3—Sc2xii71.49 (4)Sc1viii—Ge3—Gd1iii77.357 (18)
Ge2ii—Sc3—Gd2iii53.40 (4)

Symmetry codes: (i) −x+3/2, −y+1, z−1/2; (ii) x+1/2, y, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y+1, −z; (v) −x+2, −y+1, −z+1; (vi) x, y, z−1; (vii) −x+1/2, −y+1, z+1/2; (viii) −x+3/2, −y+1, z+1/2; (ix) x−1/2, y, −z+3/2; (x) −x+1, −y+1, −z+2; (xi) x, −y+1/2, z; (xii) −x+1, y+1/2, −z+1; (xiii) −x+1/2, −y+1, z−1/2; (xiv) −x+1/2, y+1/2, z−1/2; (xv) x+1/2, y, −z+3/2; (xvi) x−1/2, y, −z+1/2; (xvii) x, y, z+1; (xviii) −x+1, y+1/2, −z+2; (xix) −x+3/2, y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2062).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cromer, D. T. (1977). Acta Cryst. B33, 1993–1995.
  • Hamilton, W. C. (1965). Acta Cryst.18, 502–510.
  • Holtzberg, F., Gambino, R. J. & McGuire, T. R. (1967). J. Phys. Chem. Solids, 28, 2283–2289.
  • Misra, S. & Miller, G. J. (2008). J. Am. Chem. Soc.130, 13900–13911. [PubMed]
  • Mozharivskyj, Y., Choe, W., Pecharsky, A. O. & Miller, G. J. (2003). J. Am. Chem. Soc.125, 15183–15190. [PubMed]
  • Shannon, R. D. (1976). Acta Cryst. A32, 751–767.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G. S., Johnson, Q. & Tharp, A. G. (1967). Acta Cryst.22, 269–272.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography