PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o682–o683.
Published online 2009 March 6. doi:  10.1107/S1600536809007284
PMCID: PMC2969074

4,4′-[Ethylenebis(nitrilomethylidyne)]dibenzonitrile

Abstract

The mol­ecule of the title Schiff base compound, C18H14N4, lies across a crystallographic inversion centre and adopts an E configuration with respect to the azomethine (C=N) bonds. The imino groups are coplanar with the aromatic rings with a maximum deviation of 0.1574 (12) Å for the N atom. Within the mol­ecule, the planar units are parallel, but extend in opposite directions from the dimethyl­ene bridge. In the crystal structure, pairs of inter­molecular C—H(...)N hydrogen bonds link neighbouring mol­ecules into centrosymmetric dimers with R 2 2(10) ring motifs. An inter­esting feature of the crystal structure is the short inter­molecular C(...)C inter­action with a distance of 3.3821 (13) Å, which is shorter than the sum of the van der Waals radius of a carbon atom.

Related literature

For bond-length data, see Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For related structures see, for example: Fun & Kia (2008 [triangle]): Fun, Kargar & Kia (2008 [triangle]); Fun, Kia & Kargar (2008 [triangle]). For information on Schiff base complexes and their applications, see, for example, Pal et al. (2005 [triangle]); Calligaris & Randaccio, (1987 [triangle]). Hou et al. (2001 [triangle]); Ren et al. (2002 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o682-scheme1.jpg

Experimental

Crystal data

  • C18H14N4
  • M r = 286.33
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o682-efi1.jpg
  • a = 4.6843 (2) Å
  • b = 6.9872 (3) Å
  • c = 11.6208 (5) Å
  • α = 78.147 (3)°
  • β = 87.462 (3)°
  • γ = 74.081 (2)°
  • V = 357.94 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 K
  • 0.45 × 0.29 × 0.06 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.964, T max = 0.995
  • 7927 measured reflections
  • 2551 independent reflections
  • 2034 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.146
  • S = 1.08
  • 2551 reflections
  • 100 parameters
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007284/at2733sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007284/at2733Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for the award of a post-doctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Schiff bases are among the most prevalent mixed-donor ligands in the field of coordination chemistry in which there has been growing interest, mainly because of their wide application in the areas such as biochemistry, synthesis, and catalysis (Pal et al., 2005; Hou et al., 2001; Ren et al., 2002). Many Schiff base complexes have been structurally characterized, but only a relatively small number of free Schiff bases have had their X-ray structures reported (Calligaris & Randaccio, 1987). As an extension of our work (Fun, Kargar & Kia 2008; Fun, Kia & Kargar 2008) on the structural characterization of Schiff base ligands, the title compound (I), is reported here.

The molecule of the title compound, (Fig. 1), lies across a crystallographic inversion centre and adopts an E configuration with respect to the azomethine (C═N) bond. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable with the values found in related structures (Fun & Kia 2008; Fun, Kargar & Kia 2008; Fun, Kia & Kargar 2008). The two planar units are parallel but extend in opposite directions from the dimethylene bridge. The interesting feature of the crystal structure is the short intermolecular C3···C6 interactions [symmetry code: 1 + x, y, z] with a distance of 3.3821 (13) Å, which is shorter than the sum of the van der Waals radius of carbon atom. In the crystal structure, pairs of intermolecular C—H···N hydrogen bonds link neighbouring molecules into dimer with R22(10) ring motif (Bernstein et al., 1995) (Table 1, Fig. 2).

Experimental

The synthetic method has been described earlier (Fun, Kargar, & Kia, 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement

All of the hydrogen atoms were positioned geometrically with C—H = 0.95 or 0.97 Å and refined in riding mode with Uiso (H) = 1.2 Ueq (C).

Figures

Fig. 1.
The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms. The suffix A corresponds to symmetry code [-x + 1, -y, -z].
Fig. 2.
The crystal packing of (I), viewed approximately down the a-axis, showing dimer formation by R22(10) ring motif. Intermolecular interactions are shown as dashed lines.

Crystal data

C18H14N4Z = 1
Mr = 286.33F(000) = 150
Triclinic, P1Dx = 1.328 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.6843 (2) ÅCell parameters from 3276 reflections
b = 6.9872 (3) Åθ = 3.1–36.3°
c = 11.6208 (5) ŵ = 0.08 mm1
α = 78.147 (3)°T = 100 K
β = 87.462 (3)°Plate, colourless
γ = 74.081 (2)°0.45 × 0.29 × 0.06 mm
V = 357.94 (3) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer2551 independent reflections
Radiation source: fine-focus sealed tube2034 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 32.5°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −6→7
Tmin = 0.964, Tmax = 0.995k = −10→10
7927 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0885P)2 + 0.0252P] where P = (Fo2 + 2Fc2)/3
2551 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.59056 (17)0.17735 (11)0.08275 (6)0.01615 (18)
N21.42099 (19)0.74379 (12)0.37951 (7)0.0216 (2)
C10.8714 (2)0.45474 (13)0.15338 (7)0.01522 (19)
H1A0.79120.49270.07760.018*
C21.0275 (2)0.57187 (13)0.19178 (8)0.01621 (19)
H2A1.05520.68730.14160.019*
C31.14366 (19)0.51580 (13)0.30666 (7)0.01489 (19)
C41.1063 (2)0.34172 (13)0.38257 (7)0.01654 (19)
H4A1.18450.30470.45860.020*
C50.9504 (2)0.22467 (13)0.34268 (8)0.01632 (19)
H5A0.92350.10880.39270.020*
C60.83369 (19)0.27878 (13)0.22843 (7)0.01374 (18)
C70.67371 (19)0.14854 (13)0.18937 (7)0.01451 (18)
H7A0.63220.04240.24400.017*
C80.4324 (2)0.03967 (13)0.05429 (7)0.01563 (19)
H8A0.22430.11080.03940.019*
H8B0.4460−0.07320.12020.019*
C91.2999 (2)0.64058 (13)0.34745 (7)0.01641 (19)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0164 (4)0.0181 (3)0.0170 (3)−0.0075 (3)−0.0010 (3)−0.0063 (3)
N20.0229 (4)0.0232 (4)0.0216 (4)−0.0100 (3)−0.0030 (3)−0.0054 (3)
C10.0149 (4)0.0185 (4)0.0139 (4)−0.0058 (3)−0.0021 (3)−0.0047 (3)
C20.0167 (4)0.0168 (4)0.0169 (4)−0.0068 (3)−0.0011 (3)−0.0040 (3)
C30.0127 (4)0.0173 (4)0.0168 (4)−0.0051 (3)−0.0004 (3)−0.0067 (3)
C40.0169 (4)0.0191 (4)0.0151 (4)−0.0059 (3)−0.0028 (3)−0.0047 (3)
C50.0175 (4)0.0166 (4)0.0159 (4)−0.0063 (3)−0.0015 (3)−0.0029 (3)
C60.0120 (4)0.0157 (4)0.0149 (4)−0.0040 (3)−0.0001 (3)−0.0056 (3)
C70.0142 (4)0.0159 (4)0.0153 (4)−0.0059 (3)0.0003 (3)−0.0050 (3)
C80.0159 (4)0.0183 (4)0.0162 (4)−0.0085 (3)−0.0008 (3)−0.0058 (3)
C90.0158 (4)0.0182 (4)0.0159 (4)−0.0047 (3)−0.0012 (3)−0.0046 (3)

Geometric parameters (Å, °)

N1—C71.2745 (11)C4—C51.3893 (12)
N1—C81.4585 (11)C4—H4A0.9300
N2—C91.1551 (11)C5—C61.3962 (12)
C1—C21.3821 (11)C5—H5A0.9300
C1—C61.4031 (12)C6—C71.4730 (11)
C1—H1A0.9300C7—H7A0.9300
C2—C31.4017 (12)C8—C8i1.5246 (16)
C2—H2A0.9300C8—H8A0.9700
C3—C41.3966 (12)C8—H8B0.9700
C3—C91.4389 (11)
C7—N1—C8117.00 (7)C6—C5—H5A119.6
C2—C1—C6120.14 (8)C5—C6—C1119.61 (8)
C2—C1—H1A119.9C5—C6—C7118.94 (7)
C6—C1—H1A119.9C1—C6—C7121.45 (8)
C1—C2—C3119.68 (8)N1—C7—C6121.78 (8)
C1—C2—H2A120.2N1—C7—H7A119.1
C3—C2—H2A120.2C6—C7—H7A119.1
C4—C3—C2120.80 (8)N1—C8—C8i109.60 (9)
C4—C3—C9119.58 (8)N1—C8—H8A109.8
C2—C3—C9119.61 (7)C8i—C8—H8A109.8
C5—C4—C3118.95 (8)N1—C8—H8B109.8
C5—C4—H4A120.5C8i—C8—H8B109.8
C3—C4—H4A120.5H8A—C8—H8B108.2
C4—C5—C6120.81 (8)N2—C9—C3178.76 (9)
C4—C5—H5A119.6
C6—C1—C2—C3−1.03 (13)C4—C5—C6—C7179.13 (7)
C1—C2—C3—C40.65 (13)C2—C1—C6—C51.07 (13)
C1—C2—C3—C9−178.50 (7)C2—C1—C6—C7−178.76 (7)
C2—C3—C4—C5−0.28 (13)C8—N1—C7—C6−179.67 (7)
C9—C3—C4—C5178.86 (7)C5—C6—C7—N1−172.24 (8)
C3—C4—C5—C60.32 (14)C1—C6—C7—N17.59 (14)
C4—C5—C6—C1−0.71 (14)C7—N1—C8—C8i−131.42 (10)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4A···N2ii0.932.603.4702 (12)156

Symmetry codes: (ii) −x+3, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2733).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308. [PMC free article] [PubMed]
  • Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64, o1722–o1723. [PMC free article] [PubMed]
  • Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335. [PMC free article] [PubMed]
  • Hou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042–7048.
  • Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem.44, 3880–3889. [PubMed]
  • Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem.45, 410–419. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography