PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o799.
Published online 2009 March 19. doi:  10.1107/S1600536809009118
PMCID: PMC2969073

Diethyl 2,6-dimethyl-4-phenyl-1,4-dihydro­pyridine-3,5-dicarboxyl­ate

Abstract

The title mol­ecule, C19H23NO4, was synthesized by the reaction of benzaldehyde, ethyl acetoacetate and NH4HCO3. The dihydro­pyridine ring adopts a flattened boat conformation and the plane of the base of the boat forms a dihedral angle of 88.78 (9)° with the phenyl ring. The packing is stabilized by strong inter­molecular N—H(...)O and weak inter­molecular C—H(...)O hydrogen bonds.

Related literature

For general background, see: Cutshall et al. (2002 [triangle]); Henry (2004 [triangle]). For the crystal structure of the related compound diethyl 2,6-dimethyl-4-styryl-1,4-dihydro­pyridine-3,5-dicarb­oxyl­ate, see: Wang et al., (2007 [triangle]). For hydrogen bond definitions, see: Desiraju & Steiner (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o799-scheme1.jpg

Experimental

Crystal data

  • C19H23NO4
  • M r = 329.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o799-efi1.jpg
  • a = 9.7502 (12) Å
  • b = 7.3854 (9) Å
  • c = 24.326 (2) Å
  • β = 92.567 (1)°
  • V = 1749.9 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.50 × 0.46 × 0.32 mm

Data collection

  • Siemens SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.958, T max = 0.973
  • 8718 measured reflections
  • 3084 independent reflections
  • 1989 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.131
  • S = 1.01
  • 3084 reflections
  • 225 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809009118/fb2141sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009118/fb2141Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the support of the Natural Science Foundation of the College of Life Science, Ningxia University (grant No. 081040).

supplementary crystallographic information

Comment

The development of new methods for the synthesis of substituted pyridines is a motive for the current study. Substituted pyridines attract the interest because of their presence in numerous natural products along with a wide spectrum of their physiological activities (Cutshall et al., 2002). Pyridine derivatives and their complexes have been studied for their fungicidal and antibacterial effects, as well as antiviral drugs (Henry, 2004).

In this paper, we present the structure of diethyl 2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (Fig. 1).

The bond lengths and angles are normal and comparable to those observed in the reported diethyl 2,6-dimethyl-4-styryl-1,4-dihydropyridine-3,5-dicarboxylate (Wang et al., 2007).

In the crystal structure, the dihydropyridine ring adopts a flattened boat conformation and the plane of the base of the boat (C1/C2/C4/C5) contains 88.78 (9)° with the phenyl ring. There are present strong (Desiraju & Steiner, 1999) intermolecular N—H···O hydrogen bonds (Tab. 1) that link the molecules into chains propagated in the direction [010].

Experimental

Fresh benzaldehyde (6 mmol), ethyl acetoacetate (6 mmol) and NH4HCO3 (6 mmol) were mixed in a 50 ml flask. After the mixture had been stirred for 3 h at 293 K, the crude product was obtained. The title crystals were obtained by recrystallization from ethanol, affording the title compound as a yellow block crystalline solid. Elemental analysis: calculated for C19H23NO4: C 69.28, H 7.04, N 4.25 weight%; found: C 69.29, H 7.85, N 4.29 weight%.

Refinement

All the hydrogens were discernible in the difference electron density map. Except for the secondary-amine H atom whose coordinates were refined freely the remaining hydrogens were situated into the idealized positions and were refined within a riding model approximation: Cmethyl—H = 0.96, Cmethylene—H 0.97, Cmethine = 0.98 Å. Uiso(H) = 1.2 UeqCmethylene/Cmethine/Nsecondary-amine; Uiso(H) = 1.5 Ueq(Cmethyl). The methyl groups were allowed to rotate during the refinement.

Figures

Fig. 1.
The title molecule with the atomic numbering scheme. The displacement ellipsoids are shown at the 30% probability level.

Crystal data

C19H23NO4F(000) = 704
Mr = 329.38Dx = 1.250 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 2342 reflections
a = 9.7502 (12) Åθ = 2.6–27.7°
b = 7.3854 (9) ŵ = 0.09 mm1
c = 24.326 (2) ÅT = 298 K
β = 92.567 (1)°Block, yellow
V = 1749.9 (3) Å30.50 × 0.46 × 0.32 mm
Z = 4

Data collection

Siemens SMART 1000 CCD diffractometer3084 independent reflections
Radiation source: fine-focus sealed tube1989 reflections with I > 2σ(I)
graphiteRint = 0.033
[var phi] and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→11
Tmin = 0.958, Tmax = 0.973k = −8→8
8718 measured reflectionsl = −28→28

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131w = 1/[σ2(Fo2) + (0.0521P)2 + 0.8294P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3084 reflectionsΔρmax = 0.22 e Å3
225 parametersΔρmin = −0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
85 constraintsExtinction coefficient: 0.0027 (8)
Primary atom site location: structure-invariant direct methods

Special details

Experimental. The sample was cut out from a larger slab crystal.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.3363 (2)1.1267 (3)0.55024 (8)0.0405 (5)
H10.327 (3)1.230 (4)0.5394 (10)0.049*
O10.57917 (16)0.6975 (2)0.65667 (7)0.0476 (5)
O20.66266 (19)0.9781 (3)0.66376 (8)0.0619 (6)
O30.14967 (17)0.6965 (2)0.46314 (6)0.0468 (5)
O40.2624 (2)0.5071 (2)0.51964 (7)0.0572 (5)
C10.4405 (2)1.0939 (3)0.58911 (9)0.0376 (6)
C20.4587 (2)0.9233 (3)0.60794 (9)0.0332 (5)
C30.3494 (2)0.7821 (3)0.59344 (8)0.0324 (5)
H30.39370.66300.59270.039*
C40.2846 (2)0.8200 (3)0.53680 (8)0.0318 (5)
C50.2721 (2)0.9937 (3)0.51905 (9)0.0356 (5)
C60.2424 (2)0.7790 (3)0.63775 (8)0.0323 (5)
C70.2655 (2)0.6791 (4)0.68509 (10)0.0469 (6)
H70.34360.60700.68880.056*
C80.1752 (3)0.6838 (4)0.72719 (10)0.0565 (8)
H80.19390.61750.75920.068*
C90.0577 (3)0.7862 (4)0.72192 (10)0.0538 (7)
H9−0.00350.78910.75010.065*
C100.0315 (3)0.8837 (4)0.67494 (10)0.0497 (7)
H10−0.04830.95240.67100.060*
C110.1231 (2)0.8805 (3)0.63333 (10)0.0411 (6)
H110.10430.94810.60160.049*
C120.5222 (3)1.2590 (3)0.60462 (11)0.0547 (7)
H12A0.48921.30920.63790.082*
H12B0.51261.34690.57560.082*
H12C0.61721.22680.61020.082*
C130.5757 (2)0.8760 (3)0.64511 (9)0.0387 (6)
C140.2330 (2)0.6604 (3)0.50671 (9)0.0345 (5)
C150.1963 (3)1.0650 (3)0.46890 (10)0.0508 (7)
H15A0.22140.99650.43730.076*
H15B0.21961.19000.46380.076*
H15C0.09931.05430.47330.076*
C160.6846 (3)0.6355 (4)0.69600 (11)0.0582 (8)
H16A0.76900.70090.69020.070*
H16B0.70190.50790.68980.070*
C170.6457 (4)0.6618 (5)0.75336 (12)0.0819 (10)
H17A0.63620.78880.76060.123*
H17B0.71560.61180.77790.123*
H17C0.56010.60180.75890.123*
C180.1024 (3)0.5457 (3)0.42944 (10)0.0497 (7)
H18A0.04770.46400.45070.060*
H18B0.18000.47910.41620.060*
C190.0187 (4)0.6213 (4)0.38256 (12)0.0757 (10)
H19A−0.05620.68970.39620.114*
H19B−0.01670.52420.35980.114*
H19C0.07470.69880.36120.114*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0507 (13)0.0230 (10)0.0470 (12)−0.0013 (10)−0.0054 (10)0.0019 (9)
O10.0410 (10)0.0462 (11)0.0542 (11)0.0029 (8)−0.0141 (8)0.0051 (8)
O20.0573 (12)0.0616 (12)0.0647 (12)−0.0180 (10)−0.0213 (10)0.0014 (10)
O30.0648 (11)0.0324 (9)0.0415 (9)−0.0024 (8)−0.0184 (8)−0.0023 (7)
O40.0876 (14)0.0259 (9)0.0555 (11)0.0040 (9)−0.0245 (10)0.0001 (8)
C10.0402 (14)0.0340 (14)0.0385 (13)−0.0032 (11)0.0009 (11)−0.0053 (10)
C20.0344 (12)0.0335 (13)0.0316 (11)−0.0016 (10)0.0000 (10)−0.0018 (10)
C30.0371 (13)0.0252 (12)0.0345 (12)−0.0002 (10)−0.0037 (10)0.0014 (9)
C40.0373 (13)0.0273 (12)0.0305 (11)0.0001 (10)−0.0014 (10)0.0010 (9)
C50.0425 (14)0.0316 (12)0.0327 (12)0.0017 (11)0.0009 (10)0.0003 (10)
C60.0356 (13)0.0285 (12)0.0323 (12)−0.0057 (10)−0.0052 (9)0.0015 (9)
C70.0388 (14)0.0544 (17)0.0468 (15)−0.0019 (12)−0.0055 (12)0.0163 (12)
C80.0498 (16)0.078 (2)0.0414 (15)−0.0118 (15)−0.0034 (13)0.0210 (14)
C90.0481 (16)0.0715 (19)0.0424 (15)−0.0113 (15)0.0079 (12)0.0010 (14)
C100.0471 (15)0.0519 (16)0.0507 (16)0.0061 (13)0.0075 (13)0.0032 (13)
C110.0452 (14)0.0398 (14)0.0382 (13)0.0031 (12)0.0006 (11)0.0069 (11)
C120.0603 (17)0.0389 (15)0.0641 (17)−0.0110 (13)−0.0057 (14)−0.0053 (13)
C130.0356 (13)0.0459 (15)0.0347 (13)−0.0038 (12)0.0019 (10)−0.0027 (11)
C140.0421 (13)0.0304 (13)0.0309 (12)−0.0003 (11)−0.0005 (10)0.0006 (10)
C150.0710 (18)0.0355 (14)0.0446 (15)0.0015 (13)−0.0099 (13)0.0069 (11)
C160.0473 (16)0.0625 (19)0.0629 (18)0.0087 (14)−0.0179 (13)0.0062 (14)
C170.091 (2)0.098 (3)0.0554 (19)0.010 (2)−0.0085 (17)0.0202 (18)
C180.0689 (18)0.0353 (14)0.0436 (14)−0.0102 (13)−0.0112 (13)−0.0056 (11)
C190.105 (3)0.0559 (18)0.0620 (19)−0.0032 (18)−0.0383 (18)−0.0064 (15)

Geometric parameters (Å, °)

N1—C51.375 (3)C8—H80.9300
N1—C11.378 (3)C9—C101.365 (4)
N1—H10.81 (3)C9—H90.9300
O1—C131.348 (3)C10—C111.380 (3)
O1—C161.447 (3)C10—H100.9300
O2—C131.208 (3)C11—H110.9300
O3—C141.333 (3)C12—H12A0.9600
O3—C181.445 (3)C12—H12B0.9600
O4—C141.206 (3)C12—H12C0.9600
C1—C21.349 (3)C15—H15A0.9600
C1—C121.495 (3)C15—H15B0.9600
C2—C131.466 (3)C15—H15C0.9600
C2—C31.522 (3)C16—C171.475 (4)
C3—C41.516 (3)C16—H16A0.9700
C3—C61.533 (3)C16—H16B0.9700
C3—H30.9800C17—H17A0.9600
C4—C51.357 (3)C17—H17B0.9600
C4—C141.464 (3)C17—H17C0.9600
C5—C151.493 (3)C18—C191.482 (4)
C6—C71.378 (3)C18—H18A0.9700
C6—C111.384 (3)C18—H18B0.9700
C7—C81.381 (3)C19—H19A0.9600
C7—H70.9300C19—H19B0.9600
C8—C91.374 (4)C19—H19C0.9600
C5—N1—C1123.83 (19)C1—C12—H12B109.5
C5—N1—H1116.7 (19)H12A—C12—H12B109.5
C1—N1—H1117.3 (19)C1—C12—H12C109.5
C13—O1—C16117.3 (2)H12A—C12—H12C109.5
C14—O3—C18117.68 (17)H12B—C12—H12C109.5
C2—C1—N1118.6 (2)O2—C13—O1121.4 (2)
C2—C1—C12128.0 (2)O2—C13—C2126.6 (2)
N1—C1—C12113.4 (2)O1—C13—C2111.9 (2)
C1—C2—C13121.2 (2)O4—C14—O3121.6 (2)
C1—C2—C3118.8 (2)O4—C14—C4123.6 (2)
C13—C2—C3119.83 (19)O3—C14—C4114.84 (19)
C4—C3—C2110.05 (17)C5—C15—H15A109.5
C4—C3—C6111.88 (17)C5—C15—H15B109.5
C2—C3—C6109.81 (17)H15A—C15—H15B109.5
C4—C3—H3108.3C5—C15—H15C109.5
C2—C3—H3108.3H15A—C15—H15C109.5
C6—C3—H3108.3H15B—C15—H15C109.5
C5—C4—C14125.3 (2)O1—C16—C17112.2 (2)
C5—C4—C3119.46 (19)O1—C16—H16A109.2
C14—C4—C3115.16 (18)C17—C16—H16A109.2
C4—C5—N1117.9 (2)O1—C16—H16B109.2
C4—C5—C15128.8 (2)C17—C16—H16B109.2
N1—C5—C15113.3 (2)H16A—C16—H16B107.9
C7—C6—C11117.4 (2)C16—C17—H17A109.5
C7—C6—C3120.3 (2)C16—C17—H17B109.5
C11—C6—C3122.23 (19)H17A—C17—H17B109.5
C6—C7—C8121.4 (2)C16—C17—H17C109.5
C6—C7—H7119.3H17A—C17—H17C109.5
C8—C7—H7119.3H17B—C17—H17C109.5
C9—C8—C7120.1 (2)O3—C18—C19107.3 (2)
C9—C8—H8119.9O3—C18—H18A110.3
C7—C8—H8119.9C19—C18—H18A110.3
C10—C9—C8119.5 (2)O3—C18—H18B110.3
C10—C9—H9120.2C19—C18—H18B110.3
C8—C9—H9120.2H18A—C18—H18B108.5
C9—C10—C11120.1 (2)C18—C19—H19A109.5
C9—C10—H10119.9C18—C19—H19B109.5
C11—C10—H10119.9H19A—C19—H19B109.5
C10—C11—C6121.4 (2)C18—C19—H19C109.5
C10—C11—H11119.3H19A—C19—H19C109.5
C6—C11—H11119.3H19B—C19—H19C109.5
C1—C12—H12A109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.81 (3)2.19 (3)2.986 (3)168 (3)
C3—H3···O10.982.352.733 (3)103
C3—H3···O40.982.432.816 (3)103
C7—H7···O10.932.553.169 (3)124
C12—H12C···O20.962.272.841 (3)116
C15—H15A···O30.962.422.762 (3)101
C8—H8···O2ii0.932.513.387 (3)157

Symmetry codes: (i) x, y+1, z; (ii) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2141).

References

  • Cutshall, N. S., Kucera, K. A., Ursion, R., Latham, J. & Ihle, N. C. (2002). Bioorg. Med. Chem. Lett.12, 1517–1520. [PubMed]
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, p. 13. New York: Oxford University Press Inc.
  • Henry, G. D. (2004). Tetrahedron, 60, 6043–6061.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Wang, J. P., Du, M. J., Fu, Y. J., Wang, Y. J., Li, N. & Zheng, A. X. (2007). Chin. J. Synth. Chem.1, 42–45.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography