PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o871–o872.
Published online 2009 March 25. doi:  10.1107/S1600536809010137
PMCID: PMC2969072

5-Chloro-8-hydr­oxy-6-methyl-1,4-naphthoquinone

Abstract

The mol­ecule of the title compound, C11H7ClO3, is planar, with a maximum deviation of 0.0383 (10) Å from the naphthoquinone plane. An intra­molecular O—H(...)O hydrogen bond generates an S(6) ring motif. The crystal packing is stabilized by inter­molecular C—H(...)O hydrogen bonds. Short intra­molecular Cl(...)O [2.8234 (8) Å] and O(...)O [2.5530 (11) Å], and inter­molecular Cl(...)Cl [3.2777 (3) Å] contacts further stabilize the crystal structure.

Related literature

For the biological activity of the related compound 7-methyl­juglone, see: Mahapatra et al. (2007 [triangle]); Van der Kooy & Meyer (2006 [triangle]). For the synthesis of 7-methyl­juglone from the title compound, see: Musgrave & Skoyles (2001 [triangle]); Mahapatra et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o871-scheme1.jpg

Experimental

Crystal data

  • C11H7ClO3
  • M r = 222.62
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o871-efi1.jpg
  • a = 10.7546 (1) Å
  • b = 10.3104 (1) Å
  • c = 16.8370 (2) Å
  • β = 100.285 (1)°
  • V = 1836.96 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.40 mm−1
  • T = 100 K
  • 0.30 × 0.21 × 0.14 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.891, T max = 0.945
  • 17328 measured reflections
  • 4015 independent reflections
  • 3356 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.109
  • S = 1.07
  • 4015 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010137/sj2597sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010137/sj2597Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. HO and AHK thank the Malaysian Government for the FRGS fund (203/PKIMIA/671026). DT-CT thanks Universiti Sains Malaysia for financial support.

supplementary crystallographic information

Comment

5-Hydroxy-7-methyl-1,4-naphthoquinone (7-methyljuglone) has recently been reported to exhibit activity against mycobacterium tuberculosis (Van der Kooy & Meyer, 2006; Mahapatra et al., 2007). Naturally occurring 7-methyljuglone is synthesised from 8-chloro-5-hydroxy-7-methyl-1,4-naphthoquinone in high yield (Musgrave & Skoyles, 2001; Mahapatra et al., 2007). This paper reports the molecular structure of 8-chloro-5-hydroxy-7-methyl-1,4-naphthoquinone; the precursor to synthetic 7-methyljuglone.

The asymmetric unit of (I) consists of one molecule of 8-Chloro-5-hydroxy-7-methyl-1,4-naphthoquinone. The napthoquinone ring is essentially planar with the maximum deviation from planarity being 0.0383 (10) Å for atom C8. The bond lengths in (I) have normal values (Allen et al., 1987).

An intramolecular O–H···O hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The crystal packing is stabilized by intermolecular C–H···O hydrogen bonds (Table 2) (Fig 2). Short intramolecular Cl···O = 2.8234 (8) Å; O···O = 2.5530 (11)Å and intermolecular Cl···Cli = 3.2777 (3) Å [symmetry code: (i) 1 - x, y, 3/2 - z] contacts further stabilize the crystal packing.

Experimental

The title compound was prepared from the Friedel-Crafts acylation of 4-chloro-3-methylphenol with maleic anhydride (Musgrave & Skoyles, 2001). Repeated Soxhlet extraction of the crude Friedel-Crafts product with n-hexane, and silica gel column chromatography purification [chloroform and n-hexane (1:9)] of the n-hexane extract afforded the title compound. Finally, slow evaporation of a n-hexane solution at 305 K gave single crystals of the title compound.

Refinement

H atoms were positioned geometrically [C–H = 0.93 (aromatic) or 0.96Å (methyl)] and refined using a riding model, with Uiso(H) = 1.2Ueq(aromatic C) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups. The O bound hydrogen atom was located from the Fourier map and and refined isotropically with Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. The intramolecular H bond is drawn as a dashed line.
Fig. 2.
The crystal packing of the title compound, viewed along the c axis, showing dimer formation. Dashed lines indicate the hydrogen bonding.

Crystal data

C11H7ClO3F(000) = 912
Mr = 222.62Dx = 1.610 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6307 reflections
a = 10.7546 (1) Åθ = 2.8–30.1°
b = 10.3104 (1) ŵ = 0.40 mm1
c = 16.8370 (2) ÅT = 100 K
β = 100.285 (1)°Block, red
V = 1836.96 (3) Å30.30 × 0.21 × 0.14 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer4015 independent reflections
Radiation source: fine-focus sealed tube3356 reflections with I > 2σ(I)
graphiteRint = 0.031
[var phi] and ω scansθmax = 35.1°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −12→17
Tmin = 0.891, Tmax = 0.945k = −16→16
17328 measured reflectionsl = −27→27

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0595P)2 + 0.6106P] where P = (Fo2 + 2Fc2)/3
4015 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.60008 (2)0.08776 (3)0.687132 (14)0.02314 (8)
O10.40351 (7)0.18970 (8)0.57005 (5)0.02395 (16)
O20.64859 (7)0.18264 (8)0.31989 (4)0.02085 (15)
O30.83772 (7)0.06289 (8)0.40048 (4)0.02028 (14)
H1O30.78470.10420.36530.030*
C10.46492 (8)0.18621 (9)0.51561 (6)0.01565 (16)
C20.40771 (9)0.23850 (9)0.43571 (6)0.01789 (17)
H2A0.32710.27430.42920.021*
C30.46720 (9)0.23648 (9)0.37229 (6)0.01852 (17)
H3A0.42750.27100.32320.022*
C40.59410 (9)0.18056 (9)0.37912 (5)0.01556 (16)
C50.77541 (8)0.06817 (8)0.46273 (6)0.01477 (15)
C60.83488 (8)0.01527 (9)0.53621 (6)0.01568 (16)
H6A0.9135−0.02380.53940.019*
C70.77959 (8)0.01969 (9)0.60416 (5)0.01563 (15)
C80.65972 (8)0.07923 (9)0.59849 (5)0.01508 (15)
C90.59512 (8)0.12905 (8)0.52543 (5)0.01356 (15)
C100.65466 (8)0.12451 (8)0.45647 (5)0.01354 (15)
C110.84754 (10)−0.03753 (11)0.68182 (6)0.02193 (19)
H11A0.9265−0.07380.67360.033*
H11B0.7964−0.10440.69930.033*
H11C0.86320.02900.72220.033*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.02101 (12)0.03306 (14)0.01720 (11)0.00279 (9)0.00841 (8)0.00089 (8)
O10.0164 (3)0.0311 (4)0.0264 (4)0.0055 (3)0.0096 (3)−0.0001 (3)
O20.0206 (3)0.0258 (3)0.0170 (3)0.0004 (3)0.0055 (3)0.0009 (3)
O30.0172 (3)0.0258 (3)0.0200 (3)0.0053 (3)0.0093 (3)0.0014 (3)
C10.0117 (3)0.0146 (3)0.0210 (4)0.0004 (3)0.0040 (3)−0.0023 (3)
C20.0123 (4)0.0162 (4)0.0243 (4)0.0018 (3)0.0009 (3)−0.0017 (3)
C30.0150 (4)0.0188 (4)0.0206 (4)0.0015 (3)0.0000 (3)0.0006 (3)
C40.0146 (4)0.0150 (3)0.0170 (4)−0.0012 (3)0.0027 (3)−0.0009 (3)
C50.0122 (3)0.0152 (3)0.0181 (4)−0.0003 (3)0.0058 (3)−0.0017 (3)
C60.0115 (3)0.0164 (4)0.0193 (4)0.0008 (3)0.0034 (3)−0.0012 (3)
C70.0126 (3)0.0168 (4)0.0171 (4)−0.0006 (3)0.0017 (3)−0.0010 (3)
C80.0130 (3)0.0174 (4)0.0154 (4)−0.0011 (3)0.0043 (3)−0.0013 (3)
C90.0103 (3)0.0137 (3)0.0172 (4)−0.0002 (3)0.0040 (3)−0.0017 (3)
C100.0113 (3)0.0141 (3)0.0156 (3)0.0001 (3)0.0033 (3)−0.0014 (3)
C110.0189 (4)0.0279 (5)0.0177 (4)0.0024 (4)−0.0001 (3)0.0016 (3)

Geometric parameters (Å, °)

Cl1—C81.7287 (9)C5—C61.3980 (13)
O1—C11.2222 (12)C5—C101.4092 (12)
O2—C41.2438 (11)C6—C71.3812 (13)
O3—C51.3423 (11)C6—H6A0.9300
O3—H1O30.8581C7—C81.4156 (13)
C1—C21.4777 (14)C7—C111.5002 (13)
C1—C91.5008 (12)C8—C91.3980 (13)
C2—C31.3393 (14)C9—C101.4234 (12)
C2—H2A0.9300C11—H11A0.9600
C3—C41.4670 (13)C11—H11B0.9600
C3—H3A0.9300C11—H11C0.9600
C4—C101.4667 (13)
C5—O3—H1O399.0C6—C7—C8118.69 (8)
O1—C1—C2118.62 (8)C6—C7—C11119.62 (8)
O1—C1—C9123.19 (9)C8—C7—C11121.69 (8)
C2—C1—C9118.18 (8)C9—C8—C7121.48 (8)
C3—C2—C1122.65 (8)C9—C8—Cl1122.56 (7)
C3—C2—H2A118.7C7—C8—Cl1115.95 (7)
C1—C2—H2A118.7C8—C9—C10118.71 (8)
C2—C3—C4120.92 (9)C8—C9—C1123.27 (8)
C2—C3—H3A119.5C10—C9—C1118.02 (8)
C4—C3—H3A119.5C5—C10—C9119.69 (8)
O2—C4—C10121.37 (8)C5—C10—C4119.08 (8)
O2—C4—C3119.69 (8)C9—C10—C4121.21 (8)
C10—C4—C3118.94 (8)C7—C11—H11A109.5
O3—C5—C6117.51 (8)C7—C11—H11B109.5
O3—C5—C10122.69 (8)H11A—C11—H11B109.5
C6—C5—C10119.80 (8)C7—C11—H11C109.5
C7—C6—C5121.57 (8)H11A—C11—H11C109.5
C7—C6—H6A119.2H11B—C11—H11C109.5
C5—C6—H6A119.2
O1—C1—C2—C3−178.75 (9)O1—C1—C9—C8−2.55 (14)
C9—C1—C2—C30.15 (13)C2—C1—C9—C8178.61 (8)
C1—C2—C3—C40.34 (14)O1—C1—C9—C10176.82 (9)
C2—C3—C4—O2−178.28 (9)C2—C1—C9—C10−2.03 (12)
C2—C3—C4—C101.01 (14)O3—C5—C10—C9−178.76 (8)
O3—C5—C6—C7178.08 (8)C6—C5—C10—C91.06 (13)
C10—C5—C6—C7−1.75 (13)O3—C5—C10—C4−0.34 (13)
C5—C6—C7—C80.12 (13)C6—C5—C10—C4179.48 (8)
C5—C6—C7—C11−179.54 (9)C8—C9—C10—C51.20 (13)
C6—C7—C8—C92.23 (13)C1—C9—C10—C5−178.19 (8)
C11—C7—C8—C9−178.11 (9)C8—C9—C10—C4−177.18 (8)
C6—C7—C8—Cl1−177.07 (7)C1—C9—C10—C43.43 (12)
C11—C7—C8—Cl12.59 (12)O2—C4—C10—C5−2.09 (13)
C7—C8—C9—C10−2.87 (13)C3—C4—C10—C5178.63 (8)
Cl1—C8—C9—C10176.38 (7)O2—C4—C10—C9176.30 (8)
C7—C8—C9—C1176.48 (8)C3—C4—C10—C9−2.98 (13)
Cl1—C8—C9—C1−4.26 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H1O3···O20.861.732.5530 (11)161
C2—H2A···O1i0.932.513.4124 (12)163
C3—H3A···O2ii0.932.573.3000 (12)136

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2597).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Mahapatra, A., Mativandlela, S. P. N., Binneman, B., Fourie, P. B., Hamilton, C. J., Meyer, J. J. M., Van der Kooy, F., Houghton, P. & Lall, N. (2007). Bioorg. Med. Chem.15, 7638–7646. [PubMed]
  • Musgrave, O. C. & Skoyles, D. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1318–1320.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Van der Kooy, F. & Meyer, J. J. M. (2006). S. Afr. J. Chem.59, 60–61.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography