PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m363.
Published online 2009 March 6. doi:  10.1107/S1600536809006564
PMCID: PMC2969065

Poly[μ-chlorido-[μ4-5-(4-pyrid­yl)tetra­zol­ato]dicopper(I)]

Abstract

The title three-dimensional coordination polymer, [Cu2Cl(C6H4N5)]n, is the product of the hydro­thermal reaction of CuCl2·2H2O and 5-(4-pyrid­yl)-1H-tetra­zole (4-Hptz). The two independent CuI ions are coordinated in distorted tetra­hedral and distorted trigonal coordination environments. In the unique 5-(4-pyrid­yl)-1H-tetra­zolate ligand, the dihedral angle between the pyridine and tetra­zole rings is 17.3 (2)°.

Related literature

For related transition metals complexes of 5-(4-pyrid­yl)-1H-tetra­zole, see: Xue et al. (2002 [triangle]); Jiang et al. (2004 [triangle]); Luo et al. (2005 [triangle]); Lin et al. (2005 [triangle]); Chen et al. (2008 [triangle]). For the applications of tetra­zoles, see: Butler (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m363-scheme1.jpg

Experimental

Crystal data

  • [Cu2Cl(C6H4N5)]
  • M r = 308.67
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m363-efi7.jpg
  • a = 19.6899 (7) Å
  • b = 3.64790 (10) Å
  • c = 11.6337 (3) Å
  • β = 102.923 (2)°
  • V = 814.45 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.50 mm−1
  • T = 298 K
  • 0.30 × 0.26 × 0.24 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.230, T max = 0.269
  • 3752 measured reflections
  • 1572 independent reflections
  • 1415 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.092
  • S = 1.11
  • 1572 reflections
  • 128 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.71 e Å−3
  • Δρmin = −0.71 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 621 Friedel pairs
  • Flack parameter: 0.19 (3)

Data collection: APEX2 (Bruker, 2003 [triangle]) ; cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006564/lh2752sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006564/lh2752Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the K. C. Wong Magna Fund in Ningbo University.

supplementary crystallographic information

Comment

Tetrazoles have found a wide range of applications in areas as diverse as coordination chemistry, medicinal chemistry and materials science (Butler, 1996). The study of complexes containing substituted tetrazole ligands is of interest to delineate the ways in which tetrazoles bind to metal centres. Recently, a series of 5-(4-pyridyl)-1H-tetrazole complexes of transition metals have been reported in which a range of coordination modes for the ligand were observed and extended two-dimensional and three-dimensional structures identified (Xue et al., 2002; Jiang et al., 2004; Luo et al., 2005; Lin et al., 2005; Chen et al., 2008). Herein, we report the crystal structure of a three-dimensional coordination polymer, [CuI2Cl(4-ptz)]n, derived from 5-(4-pyridyl)-1H-tetrazole and CuCl2.2H2O under hydrothermal reaction.

The asymmetric unit of the title complex contains of two independent CuI ions, one Cl-, and one 4-ptz ligand. As shown in Fig. 1, atom Cu1 adopts distorted tetrahedral geometry with a Cl2N2 donor set and atom Cu2 is in a disorted trigonal coordination geometry with an N2Cl donor set. Atom Cl1 is bonded to three CuI atoms, and the 4-ptz ligand coordinates to four CuI ions. It is noteworthy that atoms N1, N2, and N3 bond to three CuI atoms, respectively, forming a µ3-1,2,3-tetrazolyl coordination mode. The overall structure of title complex is a three-dimensional network (Fig. 2).

Experimental

A mixture of CuCl2.2H2O (0.172 g, 1 mmol), 5-(4-pyridyl)-1H-tetrazole (0.074 g, 0.5 mmol) in 8 ml deionized water was homogenized at room temperature for 30 minutes. Then the final solution was sealed in a 20 mL stainless-steelautoclave at 433 K for 72 h. A quantity of crystals was obtained after the solution was cooled to room temperature. The crystals were filtered, washed with deionized water and dried at room temperature. The yield is ca 64% based on CuCl2.2H2O.

Refinement

All H atoms on C atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 and Uiso(H) = 1.2 Ueq(C). The crystal is an inversion twin with the ratio of twin components 0.81 (3):0.19 (3).

Figures

Fig. 1.
View of the coordination environment around the CuI ions and 4-ptz ligand of title complex with labeling scheme and 30% thermal ellipsoids. Symmetry codes: (i) x, -y + 2, z - 1/2; (ii) x, y + 1, z; (iii) x, y - 1, z; (iv) x - 1/2, y - 1/2, z;(v) x, -y ...
Fig. 2.
Part of the crystal structure of the title complex.

Crystal data

[Cu2Cl(C6H4N5)]F(000) = 600
Mr = 308.67Dx = 2.517 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1367 reflections
a = 19.6899 (7) Åθ = 2.1–27.8°
b = 3.6479 (1) ŵ = 5.50 mm1
c = 11.6337 (3) ÅT = 298 K
β = 102.923 (2)°Block, yellow
V = 814.45 (4) Å30.30 × 0.26 × 0.24 mm
Z = 4

Data collection

Bruker SMART CCD APEXII diffractometer1572 independent reflections
Radiation source: fine-focus sealed tube1415 reflections with I > 2σ(I)
graphiteRint = 0.027
Detector resolution: 8.40 pixels mm-1θmax = 27.8°, θmin = 2.1°
ω scansh = −21→25
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −4→4
Tmin = 0.230, Tmax = 0.269l = −15→15
3752 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.092w = 1/[σ2(Fo2) + (0.0547P)2] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1572 reflectionsΔρmax = 0.71 e Å3
128 parametersΔρmin = −0.71 e Å3
2 restraintsAbsolute structure: Flack (1983), 621 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.19 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.17283 (4)0.9867 (2)0.16168 (5)0.0302 (2)
Cu20.07924 (5)0.1504 (3)0.34304 (8)0.0341 (2)
Cl10.08796 (8)0.4991 (4)0.16267 (13)0.0264 (3)
N10.2207 (2)0.9667 (13)0.3361 (4)0.0188 (9)
N20.1753 (3)1.0294 (14)0.4064 (5)0.0209 (9)
N30.2072 (3)0.9615 (14)0.5171 (4)0.0219 (10)
N40.2723 (3)0.8552 (15)0.5223 (4)0.0232 (10)
N50.4827 (2)0.6742 (14)0.3528 (4)0.0215 (10)
C10.4640 (3)0.5674 (16)0.4514 (6)0.0234 (12)
H1A0.49710.45350.51010.028*
C20.3980 (3)0.6184 (16)0.4700 (5)0.0203 (11)
H2A0.38760.54500.54070.024*
C30.4326 (3)0.8253 (16)0.2677 (5)0.0230 (11)
H3A0.44460.90030.19850.028*
C40.3644 (3)0.8755 (16)0.2771 (5)0.0203 (11)
H4A0.33120.97040.21450.024*
C50.3469 (3)0.7798 (14)0.3829 (5)0.0176 (10)
C60.2791 (3)0.8611 (16)0.4091 (5)0.0173 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0279 (4)0.0496 (4)0.0144 (3)−0.0021 (4)0.0076 (3)0.0018 (3)
Cu20.0125 (3)0.0561 (5)0.0334 (4)0.0066 (4)0.0042 (3)0.0033 (4)
Cl10.0223 (7)0.0274 (6)0.0276 (8)−0.0018 (5)0.0016 (6)0.0035 (5)
N10.012 (2)0.032 (2)0.012 (2)0.0020 (18)0.0023 (17)0.0003 (18)
N20.013 (2)0.036 (2)0.014 (2)0.0013 (19)0.0042 (16)−0.001 (2)
N30.017 (2)0.038 (3)0.011 (2)0.0014 (19)0.0038 (18)−0.0001 (18)
N40.018 (2)0.040 (3)0.011 (2)0.004 (2)0.0035 (18)0.001 (2)
N50.014 (2)0.028 (2)0.022 (2)0.0037 (19)0.0043 (19)−0.0005 (19)
C10.016 (3)0.028 (3)0.025 (3)0.006 (2)0.001 (2)0.006 (2)
C20.019 (3)0.030 (3)0.012 (3)0.002 (2)0.003 (2)0.002 (2)
C30.017 (3)0.034 (3)0.018 (3)0.002 (2)0.005 (2)−0.001 (2)
C40.021 (3)0.028 (3)0.012 (3)0.004 (2)0.002 (2)−0.002 (2)
C50.012 (2)0.023 (2)0.017 (3)0.002 (2)0.002 (2)−0.0028 (19)
C60.014 (2)0.024 (2)0.012 (2)0.000 (2)0.0001 (19)−0.002 (2)

Geometric parameters (Å, °)

Cu1—N3i1.958 (5)N4—C61.354 (7)
Cu1—N12.038 (5)N5—C11.339 (8)
Cu1—Cl12.4422 (15)N5—C31.349 (7)
Cu1—Cl1ii2.5090 (16)N5—Cu2vi1.931 (4)
Cu2—N2iii1.921 (5)C1—C21.377 (8)
Cu2—N5iv1.931 (4)C1—H1A0.9300
Cu2—Cl12.4923 (18)C2—C51.389 (8)
Cl1—Cu1iii2.5090 (16)C2—H2A0.9300
N1—C61.325 (7)C3—C41.383 (8)
N1—N21.360 (7)C3—H3A0.9300
N2—N31.323 (7)C4—C51.395 (8)
N2—Cu2ii1.921 (5)C4—H4A0.9300
N3—N41.327 (7)C5—C61.464 (7)
N3—Cu1v1.958 (5)
N3i—Cu1—N1133.4 (2)C1—N5—C3116.8 (5)
N3i—Cu1—Cl1116.27 (15)C1—N5—Cu2vi120.1 (4)
N1—Cu1—Cl197.70 (14)C3—N5—Cu2vi122.9 (4)
N3i—Cu1—Cl1ii106.89 (15)N5—C1—C2123.1 (5)
N1—Cu1—Cl1ii100.51 (13)N5—C1—H1A118.5
Cl1—Cu1—Cl1ii94.90 (6)C2—C1—H1A118.5
N2iii—Cu2—N5iv152.3 (2)C1—C2—C5119.8 (5)
N2iii—Cu2—Cl1101.13 (17)C1—C2—H2A120.1
N5iv—Cu2—Cl1106.30 (16)C5—C2—H2A120.1
Cu1—Cl1—Cu2123.48 (7)N5—C3—C4124.0 (5)
Cu1—Cl1—Cu1iii94.90 (6)N5—C3—H3A118.0
Cu2—Cl1—Cu1iii78.17 (5)C4—C3—H3A118.0
C6—N1—N2104.9 (5)C3—C4—C5118.2 (5)
C6—N1—Cu1142.2 (4)C3—C4—H4A120.9
N2—N1—Cu1111.9 (4)C5—C4—H4A120.9
N3—N2—N1108.7 (5)C2—C5—C4117.9 (5)
N3—N2—Cu2ii128.9 (4)C2—C5—C6118.6 (5)
N1—N2—Cu2ii122.1 (4)C4—C5—C6123.4 (5)
N2—N3—N4110.1 (4)N1—C6—N4111.5 (5)
N2—N3—Cu1v129.6 (4)N1—C6—C5128.8 (5)
N4—N3—Cu1v120.3 (4)N4—C6—C5119.6 (5)
N3—N4—C6104.8 (4)

Symmetry codes: (i) x, −y+2, z−1/2; (ii) x, y+1, z; (iii) x, y−1, z; (iv) x−1/2, y−1/2, z; (v) x, −y+2, z+1/2; (vi) x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2752).

References

  • Bruker (2003). APEX2 and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Butler, R. N. (1996). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. Oxford: Pergamon.
  • Chen, Y., Ren, Z.-G., Li, H.-X., Tang, X.-Y., Zhang, W.-H., Zhang, Y. & Lang, J.-P. (2008). J. Mol. Struct.875, 339–345.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jiang, C., Yu, Z., Wang, S., Jiao, C., Li, J., Wang, Z. & Cui, Y. (2004). Eur. J. Inorg. Chem. pp. 3662-3667.
  • Lin, P., Clegg, W., Harrington, R. W. & Henderson, R. A. (2005). Dalton Trans. pp. 2388–2394. [PubMed]
  • Luo, T.-T., Tsai, H.-L., Yang, S.-L., Liu, Y.-H., Yadav, R. D., Su, C.-C., Ueng, C.-H., Lin, L.-G. & Lu, K.-L. (2005). Angew. Chem. Int. Ed.44, 6063-6067. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xue, X., Wang, X.-S., Wang, L.-Z., Xiong, R.-G., Abrahams, B. F., You, X.-Z., Xue, Z.-L. & Che, C.-M. (2002). Inorg. Chem.41, 6544-6546. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography